Deep Learning Application to Detect Glaucoma with a Mixed Training Approach: Public Database and Expert-Labeled Glaucoma Population

Author:

Cellini Florencia,Caamaño Deborah,Carrasco Belen,Juberías José R.,Ossa Carolina,Bringas Ramón,de la Fuente Francisco,Franco Pablo,Coronado David,Pastor Jose Carlos

Abstract

<b><i>Introduction:</i></b> Artificial intelligence has real potential for early identification of ocular diseases such as glaucoma. An important challenge is the requirement for large databases properly selected, which are not easily obtained. We used a relatively original strategy: a glaucoma recognition algorithm trained with fundus images from public databases and then tested and retrained with a carefully selected patient database. <b><i>Methods:</i></b> The study’s supervised deep learning method was an adapted version of the ResNet-50 architecture previously trained from 10,658 optic head images (glaucomatous or non-glaucomatous) from seven public databases. A total of 1,158 new images labeled by experts from 616 patients were added. The images were categorized after clinical examination including visual fields in 304 (26%) control images or those with ocular hypertension and 347 (30%) images with early, 290 (25%) with moderate, and 217 (19%) with advanced glaucoma. The initial algorithm was tested using 30% of the selected glaucoma database and then re-trained with 70% of this database and tested again. <b><i>Results:</i></b> The results in the initial sample showed an area under the curve (AUC) of 76% for all images, and 66% for early, 82% for moderate, and 84% for advanced glaucoma. After retraining the algorithm, the respective AUC results were 82%, 72%, 89%, and 91%. <b><i>Conclusion:</i></b> Using combined data from public databases and data selected and labeled by experts facilitated improvement of the system’s precision and identified interesting possibilities for obtaining tools for automatic screening of glaucomatous eyes more affordably.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3