Identification and Characterization of Long Non-Coding RNAs in Osteogenic Differentiation of Human Adipose-Derived Stem Cells

Author:

Huang Guangxin,Kang Yan,Huang Zhiyu,Zhang Zhiqi,Meng Fangang,Chen Weishen,Fu Ming,Liao Weiming,Zhang Ziji

Abstract

Background/Aims: Long noncoding RNAs (lncRNAs) play important roles in stem cell differentiation. However, their role in osteogenesis of human adipose-derived stem cells (ASCs), a promising cell source for bone regeneration, remains unknown. Here, we investigated the expression profile and potential roles of lncRNAs in osteogenic differentiation of human ASCs. Methods: Human ASCs were induced to differentiate into osteoblasts in vitro, and the expression profiles of lncRNAs and mRNAs in undifferentiated and osteogenic differentiated ASCs were obtained by microarray. Bioinformatics analyses including subgroup analysis, gene ontology analysis, pathway analysis and co-expression network analysis were performed. The function of lncRNA H19 was determined by in vitro knockdown and overexpression. Quantitative reverse transcription polymerase chain reaction was utilized to examine the expression of selected genes. Results: We identified 1,460 upregulated and 1,112 downregulated lncRNAs in osteogenic differentiated human ASCs as compared with those of undifferentiated cells (Fold change ≥ 2.0, P < 0.05). Among these, 94 antisense lncRNAs, 85 enhancer-like lncRNAs and 160 lincRNAs were further recognized. We used 12 lncRNAs and 157 mRNAs to comprise a coding-non-coding gene expression network. Additionally, silencing of H19 caused a significantly increase in expression of osteogenesis-related genes, including ALPL and RUNX2, while a decrease was observed after H19 overexpression. Conclusion: This study revealed for the first time the global expression profile of lncRNAs involved in osteogenic differentiation of human ASCs and provided a foundation for future investigations of lncRNA regulation of human ASC osteogenesis.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3