Real-World Experience with Artificial Intelligence-Based Triage in Transferred Large Vessel Occlusion Stroke Patients

Author:

Morey Jacob R.,Zhang Xiangnan,Yaeger Kurt A.,Fiano Emily,Marayati Naoum Fares,Kellner Christopher P.,De Leacy Reade A.,Doshi Amish,Tuhrim Stanley,Fifi Johanna T.

Abstract

<b><i>Background and Purpose:</i></b> Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes. <b><i>Methods:</i></b> A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts. <b><i>Results:</i></b> The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; <i>p</i> = 0.01) with less variation (<i>p</i> &#x3c; 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (<i>p</i> = 0.15). <b><i>Conclusions:</i></b> Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Reference13 articles.

1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

2. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316(12):1279–88.

3. Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg. 2020;12(2):156–64.

4. Yaeger KA, Martini M, Yaniv G, Oermann EK, Costa AB. United States regulatory approval of medical devices and software applications enhanced by artificial intelligence. Health Policy Technol. 2019;8(2):192–7.

5. Wei D, Oxley TJ, Nistal DA, Mascitelli JR, Wilson N, Stein L, et al. Mobile interventional stroke teams lead to faster treatment times for thrombectomy in large vessel occlusion. Stroke. 2017;48(12):3295–300.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3