Digital Endpoints: Definition, Benefits, and Current Barriers in Accelerating Development and Adoption

Author:

Landers Matthew,Dorsey Ray,Saria Suchi

Abstract

The assessment of health and disease requires a set of criteria to define health status and progression. These health measures are referred to as “endpoints.” A “digital endpoint” is defined by its use of sensor-generated data often collected outside of a clinical setting such as in a patient’s free-living environment. Applicable sensors exist in an array of devices and can be applied in a diverse set of contexts. For example, a smartphone’s microphone might be used to diagnose or predict mild cognitive impairment due to Alzheimer’s disease or a wrist-worn activity monitor (such as those found in smartwatches) may be used to measure a drug’s effect on the nocturnal activity of patients with sickle cell disease. Digital endpoints are generating considerable excitement because they permit a more authentic assessment of the patient’s experience, reveal formerly untold realities of disease burden, and can cut drug discovery costs in half. However, before these benefits can be realized, effort must be applied not only to the technical creation of digital endpoints but also to the environment that allows for their development and application. The future of digital endpoints rests on meaningful interdisciplinary collaboration, sufficient evidence that digital endpoints can realize their promise, and the development of an ecosystem in which the vast quantities of data that digital endpoints generate can be analyzed. The fundamental nature of health care is changing. With coronavirus disease 2019 serving as a catalyst, there has been a rapid expansion of home care models, telehealth, and remote patient monitoring. The increasing adoption of these health-care innovations will expedite the requirement for a digital characterization of clinical status as current assessment tools often rely upon direct interaction with patients and thus are not fit for purpose to be administered remotely. With the ubiquity of relatively inexpensive sensors, digital endpoints are positioned to drive this consequential change. It is therefore not surprising that regulators, physicians, researchers, and consultants have each offered their assessment of these novel tools. However, as we further describe later, the broad adoption of digital endpoints will require a cooperative effort. In this article, we present an analysis of the current state of digital endpoints. We also attempt to unify the perspectives of the parties involved in the development and deployment of these tools. We conclude with an interdependent list of challenges that must be collaboratively addressed before these endpoints are widely adopted.

Publisher

S. Karger AG

Subject

General Engineering

Reference29 articles.

1. Dorsey ER, Venuto C, Venkataraman V, Harris DA, Kieburtz K. Novel methods and technologies for 21st-century clinical trials: a review. JAMA Neurol. 2015 May;72(5):582–8.

2. Arora S, Venkataraman V, Zhan A, Donohue S, Biglan KM, Dorsey ER, et al. Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord. 2015 Jun;21(6):650–3.

3. Artusi CA, Mishra M, Latimer P, Vizcarra JA, Lopiano L, Maetzler W, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord. 2018 Jan;46(Suppl 1):S53–6.

4. Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, et al. Using smartphones and machine learning to quantify parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 2018;75(7):876–80.

5. Rodríguez-Artalejo F, Guallar-Castillón P, Pascual CR, Otero CM, Montes AO, García AN, et al. Health-related quality of life as a predictor of hospital readmission and death among patients with heart failure. Arch Intern Med. 2005;165(11):1274–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3