Deep Learning-Based Model Significantly Improves Diagnostic Performance for Assessing Renal Histopathology in Lupus Glomerulonephritis

Author:

Shen Luping,Sun Wenyi,Zhang Qixiang,Wei Mengru,Xu Huanke,Luo Xuan,Wang Guangji,Zhou Fang

Abstract

<b><i>Background:</i></b> Assessment of glomerular lesions and structures plays an essential role in understanding the pathological diagnosis of glomerulonephritis and prognostic evaluation of many kidney diseases. Renal pathophysiological assessment requires novel high-throughput tools to conduct quantitative, unbiased, and reproducible analyses representing a central readout. Deep learning may be an effective tool for glomerulonephritis pathological analysis. <b><i>Methods:</i></b> We developed a murine renal pathological system (MRPS) model to objectify the pathological evaluation via the deep learning method on whole-slide image (WSI) segmentation and feature extraction. A convolutional neural network model was used for accurate segmentation of glomeruli and glomerular cells of periodic acid-Schiff-stained kidney tissue from healthy and lupus nephritis mice. To achieve a quantitative evaluation, we subsequently filtered five independent predictors as image biomarkers from all features and developed a formula for the scoring model. <b><i>Results:</i></b> Perimeter, shape factor, minimum internal diameter, minimum caliper diameter, and number of objects were identified as independent predictors and were included in the establishment of the MRPS. The MRPS showed a positive correlation with renal score (<i>r</i> = 0.480, <i>p</i> &#x3c; 0.001) and obtained great diagnostic performance in discriminating different score bands (Obuchowski index, 0.842 [95% confidence interval: 0.759, 0.925]), with an area under the curve of 0.78–0.98, sensitivity of 58–93%, specificity of 72–100%, and accuracy of 74–94%. <b><i>Conclusion:</i></b> Our MRPS for quantitative assessment of renal WSIs from MRL/lpr lupus nephritis mice enables accurate histopathological analyses with high reproducibility, which may serve as a useful tool for glomerulonephritis diagnosis and prognosis evaluation.

Publisher

S. Karger AG

Subject

Materials Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3