Qiliqiangxin Attenuates Cardiac Remodeling via Inhibition of TGF-β1/Smad3 and NF-κB Signaling Pathways in a Rat Model of Myocardial Infarction

Author:

Han Anbang,Lu Yingdong,Zheng Qi,Zhang Jian,Zhao YiZhou,Zhao Mingjing,Cui Xiangning

Abstract

Background/Aims: Qiliqiangxin (QL), a traditional Chinese medicine, has been demonstrated to be effective and safe for the treatment of chronic heart failure. Left ventricular (LV) remodeling causes depressed cardiac performance and is an independent determinant of morbidity and mortality after myocardial infarction (MI). Our previous studies have shown that QL exhibits cardiac protective effects against heart failure after MI. The objective of this study was to explore the effects of QL on myocardial fibrosis in rats with MI and to investigate the underlying mechanism of these effects. Methods: A rat model of acute myocardial infarction was induced by ligating the left anterior descending coronary artery. The rats were treated with QL (1.0 g/kg/day) for 4 weeks after surgery. Echocardiography and histology examination were performed to evaluate heart function and fibrosis, respectively. Protein levels of transforming growth factor-β1 (TGF-β1), phosphorylated Smad3 (p-Smad3), phosphorylated Smad7 (p-Smad7), collagen I (Col- I), alpha smooth muscle actin (a-SMA), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), nuclear factor κB (NF-κB), and phosphorylated inhibitor of kappa B alpha (p-IκBα) were measured by western blot analysis. Results: QL treatment ameliorated adverse cardiac remodeling 8 weeks after AMI, including better preservation of cardiac function, decreased inflammation, and reduced fibrosis. In addition, QL treatment reduced Col-I, a-SMA, TGF-β1, and p-Smad3 expression levels but increased p-Smad7 levels in postmyocardial infarct rat hearts. QL administration also reduced the elevated levels of cardiac inflammation mediators, such as TNF-α and IL-6, as well as NF-κB and p-IκBα expression. Conclusions: QL therapy exerted protective effects against cardiac remodeling potentially by inhibiting TGF-β1/Smad3 and NF-κB signaling pathways, thereby preserving cardiac function, as well as reducing myocardial inflammation and fibrosis.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3