Ultrasound-Targeted Microbubble Destruction-Mediated miR-1228 Downregulation Suppresses Tumor Proliferation, Migration, and Invasion of Cervical-Cancer Cells

Author:

Bu Yanling,Li Qiang,Liang Xiao,Gao Qi,Ma Xiaoming,Jin Minghui,Yang Xiuling

Abstract

<b><i>Objectives:</i></b> Ultrasound-targeted microbubble destruction (UTMD) is an effective technology for microRNA (miRNA) delivery. miR-1228 plays a crucial role and acts as an oncogenic role in several types of cancers. This study aimed to investigate the functional effect of UTMD-mediated miR-1228 knockdown in cervical-cancer cells. <b><i>Design:</i></b> A total of 131 patients who were diagnosed with cervical cancer by histopathological examination were enrolled in this study at the Third Affiliated Hospital of Qiqihar Medical University from February 2018 to January 2021. <b><i>Participants/Materials, Setting, Methods:</i></b> miR-1228 expression was tested by reverse-transcription quantitative PCR assay. miR-1228 inhibitors were transfected into cervical-cancer cells using the UTMD method. Then, Cell Counting Kit-8 and transwell assays were carried out to explore the cell proliferation, migration, and invasion potentials, respectively. <b><i>Results:</i></b> The results revealed that miR-1228 expression was high in human cervical-cancer tissues and cell lines. Knockdown of miR-1228 suppressed tumor cell proliferation abilities, migration, and invasion capacities. Moreover, UTMD-mediated mIR-1228 inhibitor delivery enhanced the transfection efficiency of miR-1228 inhibitor alone. The UTMD-mediated miR-1228 inhibition enhanced the suppressive role of miR-1228 downregulation on cell proliferation capacity, migration, and invasion abilities in tumor cells, compared to miR-1228 knockdown alone. <b><i>Limitations:</i></b> The experiments were carried out only in SiHa and HeLa cells in vitro, and the results were not verified in animals. <b><i>Conclusions:</i></b> These results indicated that the delivery of the UTMD-mediated miR-1228 inhibitor might be a potential therapeutic method for the treatment of cervical cancer through suppressing cellular activities.

Publisher

S. Karger AG

Subject

Obstetrics and Gynecology,Reproductive Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3