Skip to main content
Log in

Receptors of glutamate and neurotrophin in vestibular neuronal functions

  • Review
  • Published:
Journal of Biomedical Science

Abstract

The last decade has witnessed advances in understanding the roles of receptors of neurotrophin and glutamate in the vestibular system. In the first section of this review, the biological actions of neurotrophins and their receptors in the peripheral and central vestibular systems are summarized. Emphasis will be placed on the roles of neurotrophins in developmental plasticity and in the maintenance of vestibular function in the adult animal. This is reviewed in relation to the developmental expression pattern of neurotrophins and their receptors within the vestibular nuclei. The second part is focused on the functional role of different glutamate receptors on central vestibular neurons. The developmental expression pattern of glutamate receptor subunits within the vestibular nuclei is reviewed in relation to the potential role of glutamate receptors in regulating the development of vestibular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agerman K, Canlon B, Duan M, Ernfors P. Neurotrophins, NMDA receptors, and nitric oxide in development and protection of the auditory system. Ann NY Acad Sci 884:131–142;1999.

    PubMed  Google Scholar 

  2. Agerman K, Hjerling-Leffler J, Blanchard MP, Scarfone E, Canlon B, Nosrat C, Ernfors P. BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 130:1479–1491;2003.

    PubMed  Google Scholar 

  3. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347:150–160;1994.

    PubMed  Google Scholar 

  4. Andersen P, Soleng AF. A thorny question: How does activity maintain dendritic spines? Nat Neurosci 2:5–7;1999.

    Article  PubMed  Google Scholar 

  5. Arvanov VL, Seebach BS, Mendell LM. NT-3 evokes an LTP-like facilitation of AMPA/kainate receptor-mediated synaptic transmission in the neonatal rat spinal cord. J Neurophysiol 84:752–758;2000.

    PubMed  Google Scholar 

  6. Bading H, Segal MM, Sucher NJ, Dudek H, Lipton SA, Greenberg ME. N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate gene expression in cultured hippocampal neurons. Neuroscience 64:653–664;1995.

    Article  PubMed  Google Scholar 

  7. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403;1994.

    Article  PubMed  Google Scholar 

  8. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553;1982.

    PubMed  Google Scholar 

  9. Bekkers JM, Stevens CF. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233;1989.

    Article  PubMed  Google Scholar 

  10. Bellingham MC, Lim R, Walmsley B. Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 511:861–869;1998.

    Article  PubMed  Google Scholar 

  11. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL. GABA, NMDA and AMPA receptors: A developmentally regulated ‘ménage à trois’. Trends Neurosci 20:523–529;1997.

    PubMed  Google Scholar 

  12. Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA 90:7859–7863;1993.

    Google Scholar 

  13. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol 10:138–145;2000.

    PubMed  Google Scholar 

  14. Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: A novel neurotrophic factor that activates trk and trkB. Neuron 7:857–866;1991.

    Article  PubMed  Google Scholar 

  15. Bettler B, Mulle C. Review: Neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34:123–139;1995.

    PubMed  Google Scholar 

  16. Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM, Yancopoulos GD. Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122:1965–1973;1996.

    PubMed  Google Scholar 

  17. Bolger C, Sansom AJ, Smith PF, Darlington CL. An antisense oligonucleotide to brainderived neurotrophic factor delays postural compensation following unilateral labyrinthectomy in guinea pig. Neuroreport 10:1485–1488;1999.

    PubMed  Google Scholar 

  18. Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6:119–126;1996.

    Article  PubMed  Google Scholar 

  19. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253;1995.

    Article  PubMed  Google Scholar 

  20. Brainard MS, Knudsen EI. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J Neurosci 18:3929–3942;1998.

    PubMed  Google Scholar 

  21. Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258:1007–1011;1992.

    PubMed  Google Scholar 

  22. Castren E, Pitkanen M, Sirvio J, Parsadanian A, Lindholm D, Thoenen H, Riekkinen PJ. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 4:895–898;1993.

    PubMed  Google Scholar 

  23. Cellerino A, Maffei L. The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol 49:53–71;1996.

    PubMed  Google Scholar 

  24. Chan YS. The coding of head orientations in neurons of bilateral vestibular nuclei of cats after unilateral labyrinthectomy: Response to off-vertical axis rotation. Exp Brain Res 114:293–303;1997.

    PubMed  Google Scholar 

  25. Chan YS, Lai CH, Shum DK. Bilateral otolith contribution of spatial coding in the vestibular system. J Biomed Sci 9:574–586;2002.

    PubMed  Google Scholar 

  26. Chan YS, Lai CH, Shum DK. Response properties of Y group neurons to crossed otolith inputs in the cat. Neuroreport 14:729–733;2003.

    PubMed  Google Scholar 

  27. Chan YS, Shum DK, Lai CH. Neuronal response sensitivity to bidirectional off-vertical axis rotations: A dimension of imbalance in the lateral vestibular nuclei of cats after unilateral labyrinthectomy. Neuroscience 94:831–843;1999.

    Article  PubMed  Google Scholar 

  28. Chao MV. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309;2003.

    Article  PubMed  Google Scholar 

  29. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798;2002.

    PubMed  Google Scholar 

  30. Chen LW, Lai CH, Law HY, Yung KK, Chan YS. Quantitative study of the coexpression of Fos andN-methyl-D-aspartate (NMDA) receptor subunits in otolith-related vestibular nuclear neurons of rats. J Comp Neurol 460:292–301;2003.

    Article  PubMed  Google Scholar 

  31. Chen LW, Yung KK, Chan YS. Co-localization of NMDA receptors and AMPA receptors in neurons of the vestibular nuclei of rats. Brain Res 884:87–97;2000.

    PubMed  Google Scholar 

  32. Cochran SL, Kasik P, Precht W. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog. Synapse 1:102–123;1987.

    Article  PubMed  Google Scholar 

  33. Colwell CS, Cepeda C, Crawford C, Levine MS. Postnatal development of glutamate receptor-mediated responses in the neostriatum. Dev Neurosci 20:154–163;1998.

    PubMed  Google Scholar 

  34. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237;1997.

    PubMed  Google Scholar 

  35. Constantine-Paton M, Cline HT. LTP and activity-dependent synaptogenesis: The more alike they are, the more different they become. Curr Opin Neurobiol 8:139–148;1998.

    PubMed  Google Scholar 

  36. Crozier RA, Black IB, Plummer MR. Blockade of NR2B-containing NMDA receptors prevents BDNF enhancement of glutamatergic transmission in hippocampal neurons. Learn Mem 6:257–266;1999.

    PubMed  Google Scholar 

  37. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Rev 20:24–46;1995.

    PubMed  Google Scholar 

  38. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 51:7–61;1999.

    PubMed  Google Scholar 

  39. Doi K, Tsumoto T, Matsunaga T. Actions of excitatory amino acid antagonists on synaptic inputs to the rat medial vestibular nucleus: An electrophysiological study in vitro. Exp Brain Res 82:254–262;1990.

    PubMed  Google Scholar 

  40. Dragunow M, Beilharz E, Mason B, Lawlor P, Abraham W, Gluckman P. Brain-derived neurotrophic factor expression after long-term potentiation. Neurosci Lett 160:232–236;1993.

    PubMed  Google Scholar 

  41. Durand GM, Konnerth A. Long-term potentiation as a mechanism of functional synapse induction in the developing hippocampus. J Physiol Paris 90:313–315;1996.

    PubMed  Google Scholar 

  42. Durand GM, Zukin RS. Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: A northern analysis study. J Neurochem 61:2239–2246;1993.

    PubMed  Google Scholar 

  43. Dutia MB, Johnston AR. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones. Exp Brain Res 118:148–154;1998.

    Article  PubMed  Google Scholar 

  44. Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT. Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16:5014–5025;1996.

    PubMed  Google Scholar 

  45. Ernfors P, Ibanez CF, Ebendal T, Olson L, Persson H. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: Developmental and topographical expression in the brain. Proc Natl Acad Sci USA 87:5454–5458;1990.

    Google Scholar 

  46. Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–50;1994.

    PubMed  Google Scholar 

  47. Ernfors P, Van De Water T, Loring J, Jaenisch R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164;1995.

    Article  PubMed  Google Scholar 

  48. Farinas I, Cano-Jaimez M, Bellmunt E, Soriano M. Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res Bull 57:809–816;2002.

    Article  PubMed  Google Scholar 

  49. Feldman DE, Knudsen EI. Experience-dependent plasticity and the maturation of glutamatergic synapses. Neuron 20:1067–1071;1998.

    PubMed  Google Scholar 

  50. Fox K, Daw NW. Do NMDA receptors have a critical function in visual cortical plasticity? Trends Neurosci 16:116–122;1993.

    Article  PubMed  Google Scholar 

  51. Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF. Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156;2002.

    Article  PubMed  Google Scholar 

  52. Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci 20:159–164;1997.

    Article  PubMed  Google Scholar 

  53. Gacek RR, Khetarpal U. Neurotrophin 3, not brain-derived neurotrophic factor or neurotrophin 4, knockout mice have delay in vestibular compensation after unilateral labyrinthectomy. Laryngoscope 108:671–678;1998.

    Article  PubMed  Google Scholar 

  54. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204;1995.

    Article  PubMed  Google Scholar 

  55. Gibbs RB, Pfaff DW. In situ hybridization detection of trkA mRNA in brain: Distribution, colocalization with p75NGFR and upregulation by nerve growth factor. J Comp Neurol 341:324–339;1994.

    Article  PubMed  Google Scholar 

  56. Golshani P, Warren RA, Jones EG. Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. J Neurophysiol 80:143–154;1998.

    PubMed  Google Scholar 

  57. Gomperts SN, Carroll R, Malenka RC, Nicoll RA. Distinct roles for ionotropic and metabotropic glutamate receptors in the maturation of excitatory synapses. J Neurosci 20:2229–2237;2000.

    PubMed  Google Scholar 

  58. Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, Geller AI, Hefti F. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci 7:222–238;1996.

    Article  PubMed  Google Scholar 

  59. Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: Role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 64:527–553;2001.

    Google Scholar 

  60. Grassi S, Frondaroli A, Pettorossi VE. Different metabotropic glutamate receptors play opposite roles in synaptic plasticity of the rat medial vestibular nuclei. J Physiol 543:795–806;2002.

    Article  PubMed  Google Scholar 

  61. Hafidi A, Hillman DE. Distribution of glutamate receptors GluR 2/3 and NR1 in the developing rat cerebellum. Neuroscience 81:427–436;1997.

    Article  PubMed  Google Scholar 

  62. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6:845–858;1991.

    Article  PubMed  Google Scholar 

  63. Harwerth RS, Smith EL 3rd, Duncan GC, Crawford ML, von Noorden GK. Multiple sensitive periods in the development of the primate visual system. Science 232:235–238;1986.

    PubMed  Google Scholar 

  64. Hashino E, Dolnick RY, Cohan CS. Developing vestibular ganglion neurons switch trophic sensitivity from BDNF to GDNF after target innervation. J Neurobiol 38:414–427;1999.

    PubMed  Google Scholar 

  65. Heumann R. Neurotrophin signalling. Curr Opin Neurobiol 4:668–679;1994.

    Article  PubMed  Google Scholar 

  66. Hohn A, Leibrock J, Bailey K, Barde YA. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339–341;1990.

    PubMed  Google Scholar 

  67. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 17:31–108;1994.

    Article  PubMed  Google Scholar 

  68. Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 24:677–736;2001.

    Article  PubMed  Google Scholar 

  69. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436;1970.

    PubMed  Google Scholar 

  70. Ip NY, Yancopoulos GD. The neurotrophins and CNTF: Two families of collaborative neurotrophic factors. Annu Rev Neurosci 19:491–515;1996.

    Article  PubMed  Google Scholar 

  71. Isaac JT, Crair MC, Nicoll RA, Malenka RC. Silent synapses during development of thalamocortical inputs. Neuron 18:269–280;1997.

    Article  PubMed  Google Scholar 

  72. Ishiyama G, Lopez I, Ishiyama A. Subcellular immunolocalization of NMDA receptor subunit NR-1 in the chinchilla vestibular periphery. Brain Res 851:270–276;1999.

    Article  PubMed  Google Scholar 

  73. Itami C, Mizuno K, Kohno T, Nakamura S. Brain-derived neurotrophic factor requirement for activity-dependent maturation of glutamatergic synapse in developing mouse somatosensory cortex. Brain Res 857:141–150;2000.

    Article  PubMed  Google Scholar 

  74. Johnston AR, Dutia MB. Postnatal development of spontaneous tonic activity in mouse medial vestibular nucleus neurones. Neurosci Lett 219:17–20;1996.

    Article  PubMed  Google Scholar 

  75. Jonas P, Burnashev N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15:987–990;1995.

    Article  PubMed  Google Scholar 

  76. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12:1281–1289;1994.

    PubMed  Google Scholar 

  77. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267:1658–1662;1995.

    PubMed  Google Scholar 

  78. Karhunen E. Postnatal development of the lateral vestibular nucleus (Deiters' nucleus) of the rat: A light and electron microscopic study. Acta Otolaryngol Suppl 313:1–87;1973.

    PubMed  Google Scholar 

  79. Khalilov I, Dzhala V, Ben-Ari Y, Khazipov R. Dual role of GABA in the neonatal rat hippocampus. Dev Neurosci 21:310–319;1999.

    Article  PubMed  Google Scholar 

  80. Kim HG, Wang T, Olafsson P, Lu B. Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc Natl Acad Sci USA 91:12341–12345;1994.

    Google Scholar 

  81. King VR, Michael GJ, Joshi RK, Priestley JV. TrkA, trkB, and trkC messenger RNA expression by bulbospinal cells of the rat. Neuroscience 92:935–944;1999.

    Article  PubMed  Google Scholar 

  82. King AJ, Moore DR. Plasticity of auditory maps in the brain. Trends Neurosci 14:31–37;1991.

    Article  PubMed  Google Scholar 

  83. Kinney GA, Peterson BW, Slater NT. The synaptic activation ofN-methyl-D-aspartate receptors in the rat medial vestibular nucleus. J Neurophysiol 72:1588–1595;1994.

    PubMed  Google Scholar 

  84. Knipper M, Leung LS, Zhao D, Rylett RJ. Short-term modulation of glutamatergic synapses in adult rat hippocampus by NGF. Neuroreport 5:2433–2436;1994.

    PubMed  Google Scholar 

  85. Knipper M, Rylett RJ. A new twist in an old story: The role for crosstalk of neuronal and trophic activity. Neurochem Int 31:659–676;1997.

    Article  PubMed  Google Scholar 

  86. Knopfel T. Evidence for N-methyl-D-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog. Brain Res 426:212–224;1987.

    Article  PubMed  Google Scholar 

  87. Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J. An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol 186:443–465;1992.

    Article  PubMed  Google Scholar 

  88. Koyama R, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Group II metabotropic glutamate receptor activation is required for normal hippocampal mossy fibre development in the rat. J Physiol 539:157–162;2002.

    Article  PubMed  Google Scholar 

  89. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M. Molecular diversity of the NMDA receptor channel. Nature 358:36–41;1992.

    Google Scholar 

  90. Lai CH, Chan YS. Spontaneous discharge and response characteristics of central otolith neurons of rats during postnatal development. Neuroscience 103:275–288;2001.

    PubMed  Google Scholar 

  91. Lai CH, Chan YS. Development of the vestibular system. Neuroembryology 1:61–71;2002.

    Article  Google Scholar 

  92. Lai CH, Law HY, Guan ZL, Yung KK, Chan YS. Expression ofN-methyl-D-aspartate receptor subunits and induction of c-fos in otolith neurons in the vestibular nuclei of postnatal rats. Soc Neurosci Abstr (USA) 30:1494;2000.

    Google Scholar 

  93. Lai CH, Li C, Zheng Y, Chan YS. Spatial coding capacity of rat central otolith neurons during postnatal development. Neurosci Lett Suppl 56:S3;2001.

    Google Scholar 

  94. Lamballe F, Klein R, Barbacid M. TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66:967–979;1991.

    Article  PubMed  Google Scholar 

  95. Lannou J, Precht W, Cazin L. The postnatal development of functional properties of central vestibular neurons in the rat. Brain Res 175:219–232;1979.

    Article  PubMed  Google Scholar 

  96. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152;1989.

    Article  PubMed  Google Scholar 

  97. Leinekugel X, Khalilov I, McLean H, Caillard O, Gaiarsa JL, Ben-Ari Y, Khazipov R. GABA is the principal fast-acting excitatory transmitter in the neonatal brain. Adv Neurol 79:189–201;1999.

    PubMed  Google Scholar 

  98. Lessmann V. Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. Gen Pharmacol 31:667–674;1998.

    Article  PubMed  Google Scholar 

  99. Levi-Montalcini R. The nerve growth factor 35 years later. Science 237:1154–1162;1987.

    PubMed  Google Scholar 

  100. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317;1996.

    Article  PubMed  Google Scholar 

  101. Lewis MR, Phelan KD, Shinnick-Gallagher P, Gallagher JP. Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse 3:149–153;1989.

    Article  PubMed  Google Scholar 

  102. Liao D, Zhang X, O'Brien R, Ehlers MD, Huganir RL. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2:37–43;1999.

    Article  PubMed  Google Scholar 

  103. Lin SY, Constantine-Paton C. Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J Neurosci 18:3725–3737;1998.

    PubMed  Google Scholar 

  104. Lopez I, Honrubia V, Lee SC, Chung WH, Li G, Beykirch K, Micevych P. The protective effect of brain-derived neurotrophic factor after gentamicin ototoxicity. Am J Otol 20:317–324;1999.

    PubMed  Google Scholar 

  105. LoTurco JJ, Owens DF, Health MJ, Davies MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298;1995.

    Article  PubMed  Google Scholar 

  106. Martin LJ, Furuta A, Blackstone CD. AMPA receptor protein in developing rat brain: Glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83:917–928;1998.

    Article  PubMed  Google Scholar 

  107. Merlio JP, Ernfors P, Jaber M, Persson H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience 51:513–532;1992.

    PubMed  Google Scholar 

  108. Montcouquiol M, Valat J, Travo C, Sans A. A role for BDNF in early postnatal rat vestibular epithelia maturation: Implication of supporting cells. Eur J Neurosci 10:598–606;1998.

    Article  PubMed  Google Scholar 

  109. Montcouquiol ME, Sans NA, Travo C, Sans A, Valat J. Detection and localization of BDNF in vestibular nuclei during the postnatal development of the rat. Neuroreport 11:1401–1405;2000.

    PubMed  Google Scholar 

  110. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540;1994.

    PubMed  Google Scholar 

  111. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256:1217–1221;1992.

    PubMed  Google Scholar 

  112. Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu Rev Pharmacol Toxicol 39:221–241;1999.

    Article  PubMed  Google Scholar 

  113. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603;1992.

    Google Scholar 

  114. Niedzielski AS, Wenthold RJ. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 15:2338–2353;1995.

    PubMed  Google Scholar 

  115. Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423;1996.

    PubMed  Google Scholar 

  116. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618;1998.

    Google Scholar 

  117. Panchision DM, Gerwin CM, DeLorenzo RJ, Jakoi ER. Glutamate receptor activation regulates mRNA at both transcriptional and posttranscriptional levels. J Neurochem 65:969–977;1995.

    PubMed  Google Scholar 

  118. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M. Neurotrophin expression in rat hippocampal slices: A stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9:1081–1088;1992.

    Article  PubMed  Google Scholar 

  119. Pellegrini-Giampietro DE, Bennett MV, Zukin RS. Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 144:65–69;1992.

    Article  PubMed  Google Scholar 

  120. Petralia RS, Esteban JA, Wang XY, Partridge JG, Zhao HM, Wenthold RJ, Malinow R. Selective acquisition of AMPA receptors at hippocampus CA1 synapses during postnatal development. Nat Neurosci 2:31–36;1999.

    Article  PubMed  Google Scholar 

  121. Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci USA 89:9915–9919;1992.

    Google Scholar 

  122. Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 75:131–144;1994.

    Article  PubMed  Google Scholar 

  123. Pitts AF, Miller MW. Expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in the somatosensory cortex of the mature rat: Coexpression with high-affinity neurotrophin receptors. J Comp Neurol 418:241–54;2000.

    Article  PubMed  Google Scholar 

  124. Pollard H, Khrestchatisky M, Moreau J, Ben Ari Y. Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain. Neuroreport 4:411–414;1993.

    PubMed  Google Scholar 

  125. Popper P, Rodrigo JP, Alvarez JC, Lopez I, Honrubia V. Expression of the AMPA-selective receptor subunits in the vestibular nuclei of the chinchilla. Mol Brain Res 44:21–30;1997.

    Article  PubMed  Google Scholar 

  126. Pujic Z, Matsumoto I, Wilce PA. Expression of the gene coding for the NR1 subunit of the NMDA receptor during rat brain development. Neurosci Lett 162:67–70;1993.

    Article  PubMed  Google Scholar 

  127. Puyal J, Sage C, Dememes D, Dechesne CJ. Distribution of alpha-amino-3-hydroxy-5-methyl-4 isoazolepropionic acid andN-methyl-D-aspartate receptor subunits in the vestibular and spiral ganglia of the mouse during early development. Dev Brain Res 139:51–57;2002.

    Article  Google Scholar 

  128. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2:352–357;1999.

    Article  PubMed  Google Scholar 

  129. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325:593–597;1987.

    Article  PubMed  Google Scholar 

  130. Raymond LA, Blackstone CD, Huganir RL. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361:637–641;1993.

    Article  PubMed  Google Scholar 

  131. Rodriguez-Tebar A, Dechant G, Barde YA. Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 4:487–492;1990.

    Article  PubMed  Google Scholar 

  132. Rohrbough J, Spitzer NC. Regulation of intracellular Cl levels by Na(+)-dependent Cl cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J Neurosci 16:82–91;1996.

    PubMed  Google Scholar 

  133. Sakai N, Ujihara H, Ishihara K, Sasa M, Tanaka C. Electrophysiological and pharmacological characteristics of ionotropic glutamate receptors in medial vestibular nucleus neurons: A whole cell patch clamp study in acutely dissociated neurons. Jpn J Pharmacol 72:335–346;1996.

    PubMed  Google Scholar 

  134. Sans NA, Montcouquiol ME, Raymond J. Postnatal developmental changes in AMPA and NMDA receptors in the rat vestibular nuclei. Dev Brain Res 123:41–52;2000.

    Article  Google Scholar 

  135. Schecterson LC, Bothwell M. Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hear Res 73:92–100;1994.

    Article  PubMed  Google Scholar 

  136. Schlaggar BL, Fox K, O'Leary DD. Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364:623–626;1993.

    Article  PubMed  Google Scholar 

  137. Schnupp JW, King AJ, Smith AL, Thompson ID. NMDA-receptor antagonists disrupt the formation of the auditory space map in the mammalian superior colliculus. J Neurosci 15:1516–1531;1995.

    PubMed  Google Scholar 

  138. Schurov IL, McNulty S, Best JD, Sloper PJ, Hastings MH. Glutamatergic induction of CREB phosphorylation and Fos expression in primary cultures of the suprachiasmatic hypothalamus in vitro is mediated by co-ordinate activity of NMDA and non-NMDA receptors. J Neuroendocrinol 11:43–51;1999.

    Article  PubMed  Google Scholar 

  139. Serafin M, Khateb A, de Waele C, Vidal PP, Muhlethaler M. Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations. Exp Brain Res 88:187–192;1992.

    PubMed  Google Scholar 

  140. Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 298:776–780;2002.

    Article  PubMed  Google Scholar 

  141. Shi J, Aamodt SM, Constantine-Paton M. Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J Neurosci 17:6264–6276;1997.

    PubMed  Google Scholar 

  142. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816;1999.

    Article  PubMed  Google Scholar 

  143. Siegel SJ, Janssen WG, Tullai JW, Rogers SW, Moran T, Heinemann SF, Morrison JH. Distribution of the excitatory amino acid receptor subunits GluR2(4) in monkey hippocampus and colocalization with subunits GluR5-7 and NMDAR1. J Neurosci 15:2707–2719;1995.

    PubMed  Google Scholar 

  144. Simon DK, Prusky GT, O'Leary DD, Constantine-Paton M.N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Proc Natl Acad Sci 89:10593–10597;1992.

    PubMed  Google Scholar 

  145. Smith PF, Darlington CL, Yan Q, Dragunow M. Unilateral vestibular deafferentation induces brain-derived neurotrophic factor (BDNF) protein expression in the guinea pig lateral but not medial vestibular nuclei. J Vest Res 8:443–447;1998.

    Article  Google Scholar 

  146. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588;2002.

    Article  PubMed  Google Scholar 

  147. Steininger TL, Wainer BH, Klein R, Barbacid M, Palfrey HC. High-affinity nerve growth factor receptor (Trk) immunoreactivity is localized in cholinergic neurons of the basal forebrain and striatum in the adult rat brain. Brain Res 612:330–335;1993.

    Article  PubMed  Google Scholar 

  148. Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of theN-methyl-D-aspartate receptor. J Biol Chem 273:20689–20692;1998.

    Google Scholar 

  149. Strack S, McNeill RB, Colbran RJ. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of theN-methyl-D-aspartate receptor. J Biol Chem 275:23798–23806;2000.

    Article  PubMed  Google Scholar 

  150. Straka H, Debler K, Dieringer N. Size-related properties of vestibular afferent fibers in the frog: Differential synaptic activation ofN-methyl-D-aspartate and non-N-methyl-D-aspartate receptors. Neuroscience 70:697–707;1996.

    Article  PubMed  Google Scholar 

  151. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15:6509–6520;1995.

    PubMed  Google Scholar 

  152. Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY, Black IB. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynapticN-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci USA 94:8191–8195;1997.

    Google Scholar 

  153. Sun L, Margolis FL, Shipley MT, Lidow MS. Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: Its regional distribution and developmental expression in the rat brain. FEBS Lett 441:392–396;1998.

    Article  PubMed  Google Scholar 

  154. Takahashi T, Feldmeyer D, Suzuki N, Onodera K, Cull-Candy SG, Sakimura K, Mishina M. Functional correlation of NMDA receptor subunit expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci 16:4376–4382;1996.

    PubMed  Google Scholar 

  155. Takahashi Y, Takahashi MP, Tsumoto T, Doi K, Matsunaga T. Synaptic input-induced increase in intraneuronal Ca2+ in the medial vestibular nucleus of young rats. Neurosci Res 21:59–69;1994.

    Article  PubMed  Google Scholar 

  156. Takahashi Y, Tsumoto T, Kubo T. N-methyl-D-aspartate receptors contribute to afferent synaptic transmission in the medial vestibular nucleus of young rats. Brain Res 659:287–291;1994.

    Article  PubMed  Google Scholar 

  157. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci 14:165–170;1991.

    Article  PubMed  Google Scholar 

  158. Thoenen H. Neurotrophins and neuronal plasticity. Science 270:593–598;1995.

    Google Scholar 

  159. Tsumoto T, Hagihara K, Sato H, Hata Y. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature 327:513–514;1987.

    Article  PubMed  Google Scholar 

  160. Vanhoutte P, Bading H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signaling and BDNF gene regulation. Curr Opin Neurobiol 13:366–371;2003.

    Article  PubMed  Google Scholar 

  161. Vidal PP, Babalian A, de Waele C, Serafin M, Vibert N, Muhlethaler M. NMDA receptors of the vestibular nuclei neurones. Brain Res Bull 40:347–352;1996.

    Article  PubMed  Google Scholar 

  162. Watanabe M, Mishina M, Inoue Y. Distinct distributions of five NMDA receptor channel subunit mRNAs in the brainstem. J Comp Neurol 343:520–531;1994.

    Article  PubMed  Google Scholar 

  163. Wenzel A, Fritschy JM, Mohler H, Benke D. NMDA receptor heterogeneity during postnatal development of the rat brain: Differential expression of the NR2A, NR2B and NR2C subunit protein. J Neurochem 68:469–478;1997.

    PubMed  Google Scholar 

  164. Wheeler EF, Bothwell M, Schecterson LC, von Bartheld CS. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: Quantitative analysis in developing rats. Hear Res 73:46–56;1994.

    Article  PubMed  Google Scholar 

  165. Wu GY, Mailnow RC, Cline HT. Maturation of a central glutamatergic synapse. Science 274:972–976;1996.

    Article  PubMed  Google Scholar 

  166. Yen JC, Chan SH. Interchangeable discharge patterns of neurons in caudal nucleus tractus solitarii in rat slices: Role of GABA and NMDA. J Physiol 504:611–627;1997.

    Article  PubMed  Google Scholar 

  167. Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65:69–78;1993.

    Article  PubMed  Google Scholar 

  168. Zhang FX, Lai CH, Lai SK, Shum DK, Yung KK, Chan YS. Neurotrophin receptor immunostaining in the vestibular nuclei of rats. Neuroreport 14:851–855;2003.

    Article  PubMed  Google Scholar 

  169. Zheng JL, Stewart RR, Gao WQ. Neurotrophin-4/5, brain-derived neurotrophic factor, and neurotrophin-3 promote survival of cultured vestibular ganglion neurons and protect them against neurotoxicity of ototoxins. J Neurobiol 28:330–340;1995.

    Article  PubMed  Google Scholar 

  170. Zheng JL, Stewart RR, Gao WQ. Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J Neurosci 15:5079–5087;1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Y.S., Chen, L.W., Lai, C.H. et al. Receptors of glutamate and neurotrophin in vestibular neuronal functions. J Biomed Sci 10, 577–587 (2003). https://doi.org/10.1007/BF02256307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256307

Key Words

Navigation