Alteration of Energy Metabolism and Antioxidative Processing in the Hippocampus of Rats Reared in Long-Term Environmental Enrichment

Author:

Kang Hee,Choi Dong-Hee,Kim Su-Kang,Lee Jongmin,Kim Youn-Jung

Abstract

Environmental enrichment (EE) is a typical experimental method that promotes levels of novelty and complexity that enhance experience-dependent neuroplasticity and cognitive behavior function in laboratory animals. Early EE is associated with resilience in the face of later-life challenges. Since increased synaptic activity enhances endogenous neuronal antioxidant defenses, we hypothesized that long-term EE beginning at an early stage may alter the levels of oxidative stress. We investigated global protein expression and oxidative stress in hippocampal proteins from rats nurtured for a 6-month EE beginning in the prenatal period. The analysis of protein expression was carried out using 2-dimensional gel electrophoresis with matrix-associated laser desorption ionization time-of-flight mass spectrometry. Proteins with altered expression were involved in energy metabolism (phosphoglycerate mutase 1, α-enolase isoform 1, adenylate kinase 1, and triose phosphate isomerase) and antioxidant enzymes (superoxide dismutase 1, glutathione S-transferase ω type 1, peroxiredoxin 5, DJ-1, and glial maturation factor β). Using Western blot assays, some of the proteins with altered expression and NADPH oxidase 2 were confirmed to be decreased. Further confirmation was demonstrated with attenuated expression of 7,8-dihydro-8-oxo-deoxyguanine, a DNA oxidative stress marker, in the hippocampus of EE group rats. Our data demonstrate that a long-term EE program beginning in the prenatal and early postnatal phase of development modulates energy metabolism and reduced oxidant stress possibly through enhanced synaptic activity. We provide evidence that EE can be developed as a tool to protect the brain from oxidative stress-induced injury.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3