Evolutionary aspects of gastrointestinal tract microbiome-host interaction underlying gastrointestinal barrier integrity

Author:

Loskutov S. I.,Proshin S. N.,Ryabukhin D. S.

Abstract

In the host sustenance and homeostasis, the microbiome is a key component in the functional system. Throughout ontogenetic development, microbiome including that of the gastrointestinal tract (GIT) is the vital factor that ensures not only host functioning, but also its interaction with environment. To uncover the mechanisms underlying GIT microbiome showing a decisive influence on host organism, a systematic approach is needed, because diverse microorganisms are predominantly localized in different parts of the GIT. Recently, a new interdisciplinary direction of science, nanobioinformatics that has been extensively developed considers gene networks as the major object of study representing a coordinated group of genes that functionally account for formation and phenotypic disclosure of various host traits. Here, an important place should be provided to the genetically determined level of the gastrointestinal tract microbiome, its interaction at the level of the host food systems. There have been increasing evidence indicating that the microbiome is directly involved in the pathogenesis of host diseases showing a multi-layered interaction with host metabolic and immune systems. At the same time, the microbial community is unevenly distributed throughout the gastrointestinal tract, and its different portions are variously active while interacting with the host immune system. The architecture of interaction between the microbiome and host cells is extremely complex, and the interaction of individual cells, at the same time, varies greatly. Bacteria colonizing the crypts of the small intestine regulate enterocyte proliferation by affecting DNA replication and gene expression, while bacteria at the tip of the intestinal villi mediate gene expression responsible for metabolism and immune response. Enterocytes and Paneth cells, in turn, regulate the vital activity of the community of microorganisms through the production of polysaccharides (carbohydrates) and antibacterial factors on their surface. Thus, the integrity of the gastrointestinal barrier (GIB) is maintained, which protects the body from infections and inflammation, while violation of its integrity leads to a number of diseases. It has been shown that depending on the dominance of certain types of bacteria the microbiome can maintain or disrupt GIB integrity. The structural and functional GIB integrity is important for body homeostasis. To date, at least 50 proteins have been characterized as being involved in the structural and functional integrability of tight junctions between gastrointestinal tract epithelial cells. The current review comprehensively discusses such issues and presents original research carried out at various facilities of translational biomedicine.

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Reference63 articles.

1. Vegetative Cell and Spore Proteomes of Clostridioides difficile Show Finite Differences and Reveal Potential Protein Markers

2. The Gastrointestinal Microbiome: A Review

3. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota

4. Cani P.D., Delzenne N.M. Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner. Acta Gastroenterol. Belg., 2010, vol. 73, pp. 267–269

5. BACTERIOLOGY OF THE BLOOD AND JOINTS IN RHEUMATIC FEVER

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3