<i>CDR1, CDR2, MDR1</i> and <i>ERG11</i> expression in azole resistant <i>Сandida albicans</i> isolated from HIV-infected patients in city of Moscow

Author:

Voropaev A. D.,Yekaterinchev D. A.,Urban Y. N.,Zverev V. V.,Nesvizhsky Yu. V.,Voropaeva E. A.,Likhanskaya E. I.,Afanasiev M. S.,Afanasiev S. S.

Abstract

Candida fungi are common opportunistic microorganisms capable of causing infections of various localization, as well as life-threatening conditions in immunocompromised patients, such as HIV-infected individuals, oncology patients, subjects undergoing HSCT, which number has been steadily increasing in recent years. In addition, resistance to anti-fungal drugs has been spreading as well. Naturally sensitive to azoles, C. albicans possess a variety of mechanisms of acquired resistance, including efflux transporters and target protein-encoding gene amplification. This study was conducted to assess a prevalence of such mechanisms in the isolates sample obtained from HIV-infected patients in the Moscow region of the Russian Federation, characterize a relationship between these mechanisms and patterns of developing drug resistance. 18 strains of C. albicans resistant to fluconazole and voriconazole were isolated from HIV-infected patients with recurrent oropharyngeal candidiasis in the Moscow region. The expression levels of the ERG11, MDR1, CDR1, CDR2 genes involved in the formation of acquired azole resistance were measured using quantitative PCR, the 2CT method with ACT and PMA genes as control genes and reference values of sensitive isolates. Expression levels exceeding the average values of sensitive isolates by more than 3 standard deviations were considered significantly elevated. In most of the isolates, elevated levels of CDR1 and CDR2 gene expression were found: 89% and 78%, respectively. The expression level of the MDR1 gene was increased only in 28% of cases. ERG11 expression levels were significantly elevated in 78% of the isolates. Expression levels of all resistance genes studied were significantly increased in 4 strains. In this sample of C. albicans isolates, acquired resistance is mainly associated with efflux vectors encoded by the CDR1 and CDR2 genes. Also, in most isolates, an increased expression level for the azole target protein gene ERG11 was detected. The expression level of the efflux transporter gene MDR1 was increased in the smallest number of samples. It is also impossible to exclude a potential role of other mechanisms in developing acquired resistance, such as mutations in the ERG11 gene. It can be assumed that the identified mechanisms of resistance result from long-term, widespread, and sometimes uncontrolled use of azoles, including those in treatment and prevention of candidiasis in HIV-infected patients.

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Reference40 articles.

1. Antifungal drug resistance Candida spp. mechanisms in reccurent genital candidiasis

2. Веселов А.В., Козлов Р.С. Инвазивный кандидоз: современные аспекты эпидемиологии, диагностики, терапии и профилактики у различных категорий пациентов (в вопроса и ответах) // Клиническая микробиология и антимикробная химиотерапия. 2016. Т. 18, № 2 (Приложение). С. 1–104. [Veselov A.V., Kozlov R.S. Invasive candidiasis: modern aspects of epidemiology, diagnosis, therapy, and prevention in various categories of patients. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2016, vol. 18, no. 2 (suppl.), pp. 1–104. (In Russ.)]

3. Пашинина О.А., Карташова О.Л., Пашкова Т.М., Попова Л.П. Антимикотикорезистентность грибов рода Candida, выделенных из репродуктивного тракта женщин с воспалительными заболеваниями гениталий // Бюллетень Оренбургского Научного Центра УрО РАН. 2016. № 3. 9 c. [Pashinina O.A., Kartashova O.L., Pashkova T.M., Popova L.P. Antimycotic resistance of Candida fungi isolated from the reproductive tract of women with inflammatory diseases of the genitals. Byulleten’ Orenburgskogo Nauchnogo Tsentra UrO RAN = Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2016, no. 3, 9 p. (In Russ.)]

4. Araújo D., Mil-Homens D., Henriques M., Silva S. Anti-EFG1 2’-OMethylRNA oligomer inhibits Candida albicans filamentation and attenuates the candidiasis in Galleria mellonella. Mol. Ther. Nucleic Acids, 2021, vol. 27, pp. 517–523. doi: 10.1016/ j.omtn.2021.12.018

5. Antifungal azoles and azole resistance in the environment: current status and future perspectives—a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3