Author:
Volobueva Aleksandrina S.,Zarubaev Vladimir V.,Fedorchenko Tatyana G.,Lipunova Galina N.,Tungusov Vladislav N.,Chupakhin Oleg N.
Abstract
Enteroviruses are non-enveloped viruses of Enterovirus genus, Picornaviridae family, causing a variety of human diseases: from acute respiratory and intestinal infections to more severe pathologies including poliomyelitis, encephalitis, myocarditis, pancreatitis. Currently, no approved direct-acting antiviral drugs for treatment of enterovirus infections exists, whereas vaccination is available only for prevention of poliomyelitis and enterovirus 71 infection. Therefore, it is promising to conduct a search for inhibitors of enteroviruses life cycle in drug development to treat enterovirus infections. Here, antiviral properties of stable free radicals, verdazyls, and their precursors, leucoverdazyls, were investigated. It has been shown that leucoverdazyls vs verdazyls increased the survival of permissive cell culture infected with coxsackievirus. The activity range of the lead leucoverdazyl against RNA-containing and DNA-containing human viruses (in the viral yield reduction assay) and its proposed mechanism of action (time of addition assay) was studied. The lead compound suppressed reproduction of group B enteroviruses in vitro, with modest activity against influenza A virus and no activity against herpes virus type 1 and adenovirus type 5. The maximum decrease in viral titers was observed upon its addition to infected cells during early and middle stages of the virus life cycle. Thus, we concluded that the studied compound has a pronounced inhibitory activity against group B enteroviruses not belonging to the class of capsid binder inhibitors, without virucidal properties. Previously, we described antioxidant properties of leucoverdazyls. It is known that many viral infections are accompanied by production of reactive oxygen species and oxidative stress, and some compounds with antioxidant properties exhibit antiviral potential. Targeted chemical modifications of leucoverdazyls and further studies of leucoverdazyl mechanism of action as well as in vivo animal studies are needed. However, the results obtained may be useful for future development of new antiviral drugs to treat enteroviral infections.
Subject
Infectious Diseases,Immunology,Immunology and Allergy
Reference34 articles.
1. Development of antiviral therapeutics combating coxsackievirus type B3 infection
2. ENTEROVIRUS INFECTION: VARIETY OF ETIOLOGICAL FACTORS AND CLINICAL MANIFESTATIONS
3. Романенкова Н.И., Бичурина М.А., Розаева Н.Р., Канаева О.И, Шишко Л.А., Черкасская И.В., Кириллова Л.П. Вирусы Коксаки В1–6 как этиологический фактор энтеровирусной инфекции // Журнал инфектологии. 2016. Т. 8, № 2. С. 65–71. [Romanenkova N.I., Bichurina M.A., Rozaeva N.R., Kanaeva O.I., Shishko L.A., Cherkasskaya I.V., Kirillova L.P. Coxsackieviruses B1–6 as Etiological Factor of Enterovirus Infection. Zhurnal infektologii = Journal Infectology, 2016, vol. 8, no. 2, pp. 65–71. (In Russ.)]
4. Enterovirus infection morbidity and peculiarities of nonpolio enteroviruses circulation on some territories of Russia in 2017
5. Antivirals blocking entry of enteroviruses and therapeutic potential
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献