Affiliation:
1. Necmettin Erbakan University
Abstract
In this paper, we study the system of third-order difference equations
\begin{equation*}
x_{n+1}=a+\frac{a_{1}}{y_{n}}+\frac{a_{2}}{y_{n-1}}+\frac{a_{3}}{y_{n-2}}%
,\quad y_{n+1}=b+\frac{b_{1}}{x_{n}}+\frac{b_{2}}{x_{n-1}}+\frac{b_{3}}{%
x_{n-2}},\quad n\in \mathbb{N}_{0},
\end{equation*}%
where the parameters $a$, $a_{i}$, $b$, $b_{i}$, $i=1,2,3$, and the initial
values $x_{-j}$, $y_{-j}$, $j=0,1,2$, are positive real numbers. We first
prove a general convergence theorem. By applying this convergence theorem to
the system, we show that positive equilibrium is a global attractor. We also
study the local asymptotic stability of the equilibrium and show that it is
globally asymptotically stable. Finally, we study the invariant set of
solutions.
Publisher
Ikonion Journal of Mathematics
Reference37 articles.
1. R. P. Agarwal, Difference Equations and Inequalities,Marcel Dekker, New York, (1992).
2. N. Akgunes and A. S. Kurbanli, On the system of rational difference equations xn = f
¡
xn−a1
, yn−b1
¢
,
yn = g
¡
yn−b2
, zn−c1
¢
, zn = g
¡
zn−c2
,xn−a2
¢
, Selcuk Journal of Applied Mathematics, 15(1), (2014), 1-8.
3. Y. Akrour, M. Kara, N. Touafek and Y. Yazlik, Solutions formulas for some general systems of nonlinear
difference equations, Miskolc Mathematical Notes, 22(2) (2021), 529–555.
4. E. Camouzis and G. Ladas, Dynamics of third-order rational difference equations with open problems
and conjectures, Chapman and Hall/CRC, (2007).
5. I. Dekkar, N. Touafek and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Revista de la real academia de ciencias exactas, físicas y naturales.
Serie A. Matemáticas, 111(2), (2017) 325-347. Doi:10.1007/s13398-016-0297-z