Utilization of artificial intelligence in the banking sector: a systematic literature review
Author:
Publisher
Springer Science and Business Media LLC
Subject
Marketing,Finance
Link
https://link.springer.com/content/pdf/10.1057/s41264-022-00176-7.pdf
Reference90 articles.
1. Agarwal, P., Swami, S., & Malhotra, S. K. 2022. Artificial intelligence adoption in the post COVID-19 new-normal and role of smart technologies in transforming business: a review. Journal of Science and Technology Policy Management.
2. Akerkar, R. 2019. Employing AI in business. In artificial intelligence for business, 63–74. Cham: Springer.
3. Akkoç, S. 2012. An empirical comparison of conventional techniques, neural networks and the three-stage hybrid adaptive neuro fuzzy inference system (ANFIS) model for credit scoring analysis: the case of Turkish credit card data. European Journal of Operational Research 222 (1): 168–178.
4. Ala’raj, M., and M.F. Abbod. 2016. Classifiers consensus system approach for credit scoring. Knowledge-Based Systems 104: 89–105.
5. Alborzi, M., and M. Khanbabaei. 2016. Using data mining and neural networks techniques to propose a new hybrid customer behavior analysis and credit scoring model in banking services based on a developed RFM analysis method. International Journal of Business Information Systems 23 (1): 1–22.
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrating machine learning for sustaining cybersecurity in digital banks;Heliyon;2024-09
2. Predicting the financial performance of microfinance institutions with machine learning techniques;Journal of Modelling in Management;2024-08-02
3. Acceptance of artificial intelligence devices in banking services: moderation role of technology anxiety and risk aversion;International Journal of Bank Marketing;2024-07-18
4. Artificial intelligence features and expectation confirmation theory in digital banking apps: Gen Y and Z perspective;Management Decision;2024-07-05
5. Digital financial consumers' decision-making: a systematic literature review and integrative framework;International Journal of Bank Marketing;2024-07-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3