Experimental Comparison of Manufacturing Parameters in Automotive Friction Materials

Author:

Akbulut Furkan1ORCID,Mutlu İbrahim2ORCID

Affiliation:

1. Hitit Üniversitesi

2. AFYON KOCATEPE UNIVERSITY

Abstract

In this study, a fixed automotive friction material content was determined and the mechanical and tribological effects of manufacturing parameters on friction materials were investigated. Parameters; pre-forming time (1-3-5 min) and pre-forming pressure (8-10-12 MPa), hot pressing time (5-10-15 min) hot pressing pressure (8-10-12 MPa) and hot pressing temperature (125-150-175 °C), curing time (4-8-12 h) and curing temperature (120-150-180 °C) were determined. The friction test of the produced samples was carried out under 0.551 MPa pressure and 7 m/s rotation speed for 90 min. In addition, the average COF, friction stability, specific wear rate, density and hardness values of the samples were calculated. According to the results obtained, the average COF value increased as the pre-forming time and pressure increased. The lowest specific wear rate among all specimens was calculated as 7.622x10-6 cm3/Nm in PFP-12 specimen. With the increase in hot pressing time, the tribological properties of friction materials improved. The highest friction stability among all samples was calculated as 79.42% in the HPT-15 sample. Although there was an increase in the average COF value with increasing hot pressing pressure and temperature, the specific wear rates increased in these parameters. The highest average COF value among all samples was obtained in the CT-12 sample with a value of 0.553. The specific wear rate increased with the increase in curing time and temperature. The highest specific wear rate among all samples was calculated 10,743x10-6 cm3/Nm in the CTe-180 sample. Finally, it has been suggested that 3 min for pre-forming time, 12 MPa for pre-forming pressure; 15 min for hot pressing time, 12 MPa for hot pressing pressure, and 150°C for hot pressing temperature; and a curing time of 8 h and curing temperature of 150 °C may be sufficient.

Funder

Scientific Research Projects Unit/Afyon Kocatepe University

Publisher

International Journal of Automotive Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3