Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy

Author:

Wuehr Max,Nusser Eva,Decker Julian,Krafczyk Siegbert,Straube Andreas,Brandt Thomas,Jahn Klaus,Schniepp Roman

Abstract

Objective:To examine the effects of imperceptible levels of white noise galvanic vestibular stimulation (nGVS) on dynamic walking stability in patients with bilateral vestibulopathy (BVP).Methods:Walking performance of 13 patients with confirmed BVP (mean age 50.1 ± 5.5 years) at slow, preferred, and fast speeds was examined during walking with zero-amplitude nGVS (sham trial) and nonzero-amplitude nGVS set to 80% of the individual cutaneous threshold for GVS (nGVS trial). Eight standard gait measures were analyzed: stride time, stride length, base of support, double support time percentage as well as the bilateral phase coordination index, and the coefficient of variation (CV) of stride time, stride length, and base of support.Results:Compared to the sham trial, nGVS improved stride time CV by 26.0% ± 8.4% (p < 0.041), stride length CV by 26.0% ± 7.7% (p < 0.029), base of support CV by 27.8% ± 2.9% (p < 0.037), and phase coordination index by 8.4% ± 8.8% (p < 0.013). The nGVS effects on walking performance were correlated with subjective ratings of walking balance (ρ = 0.79, p < 0.001). Effect of nGVS on walking stability was most pronounced during slow walking.Conclusions:In patients with BVP, nGVS is effective in improving impaired gait performance, predominantly during slower walking speeds. It primarily targets the variability and bilateral coordination characteristics of the walking pattern, which are linked to dynamic walking stability. nGVS might present an effective treatment option to immediately improve walking performance and reduce the incidence of falls in patients with BVP.Classification of evidence:This study provides Class IV evidence that in patients with BVP, an imperceptible level of nGVS improves dynamic walking stability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3