Development of a Sensitive Diagnostic Assay for Parkinson Disease Quantifying α-Synuclein–Containing Extracellular Vesicles

Author:

Hong Zhen,Tian Chen,Stewart Tessandra,Aro Patrick,Soltys David,Bercow Matt,Sheng Lifu,Borden Kayla,Khrisat Tarek,Pan Catherine,Zabetian Cyrus P.ORCID,Peskind Elaine R.,Quinn Joseph F.,Montine Thomas J.,Aasly Jan,Shi MinORCID,Zhang Jing

Abstract

ObjectiveTo develop a reliable and fast assay to quantify the α-synuclein (α-syn)–containing extracellular vesicles (EVs) in CSF and to assess their diagnostic potential for Parkinson disease (PD).MethodsA cross-sectional, multicenter study was designed, including 170 patients with PD and 131 healthy controls (HCs) with a similar distribution of age and sex recruited from existing center studies at the University of Washington and Oregon Health and Science University. CSF EVs carrying α-syn or aggregated α-syn were quantified using antibodies against total or aggregated α-syn, respectively, and highly specific, sensitive, and rapid assays based on the novel Apogee nanoscale flow cytometry technology.ResultsNo significant differences in the number and size distribution of total EVs between patients with PD and HCs in CSF were observed. When examining the total α-syn–positive and aggregated α-syn–positive EV subpopulations, the proportions of both among all detected CSF EVs were significantly lower in patients with PD compared to HCs (p < 0.0001). While each EV subpopulation showed better diagnostic sensitivity and specificity than total CSF α-syn measured directly with an immunoassay, a combination of the 2 EV subpopulations demonstrated a diagnostic accuracy that attained clinical relevance (area under curve 0.819, sensitivity 80%, specificity 71%).ConclusionUsing newly established, sensitive nanoscale flow cytometry assays, we have demonstrated that total α-syn–positive and aggregated α-syn–positive EVs in CSF may serve as a helpful tool in PD diagnosis.Classification of EvidenceThis study provides Class III evidence that total and aggregated α-syn–positive EVs in CSF identify patients with PD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3