Optimising confocal Raman microscopy for spectral mapping of cement-based materials

Author:

Zhang K.,Yio M. H. N.,Wong H. S.ORCID,Buenfeld N. R.

Abstract

AbstractRaman spectroscopy combined with confocal imaging, i.e. confocal Raman microscopy (CRM) is a relatively new technique with huge potential for high-resolution chemical mapping of phase composition and spatial distribution in cement-based materials. However, the effects of sample preparation and various operating parameters on mapping quality has not been systematically studied. This paper optimises CRM for spectral mapping of carbonated and non-carbonated cement-based materials. The effects of sample preparation and scanning parameters on the detection of four main phases (calcite, portlandite, ettringite and unreacted cement) were investigated. Results show that although freshly cut cementitious samples can be analysed as-is, the Raman signals improve with short gentle drying and surface grinding/polishing prior to analysis. Increasing laser power, exposure time and scan accumulation, and short laser wavelength yields higher signal-to-noise (SNR) ratio in the obtained spectrum. The use of a 4.15 mW laser power, 2 s exposure time and scan accumulation of 2 with 532 nm laser represents a good operating condition for Raman analysis of cement-based materials. This produces SNR > 10 for all investigated phases at short testing time and low risk of laser-induced damage. Microcracking caused by localised heating during closely-spaced mapping can be limited by impregnating the sample with epoxy to protect the microstructure. We show for the first time that CRM can be used to quantify the volume fraction of calcium carbonate and portlandite at high resolution when combined with SEM. The advantages and limitations of CRM for mapping cement-based materials are discussed.

Funder

Engineering and Physical Sciences Research Council

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3