Fatigue life prediction of aluminum 6061 alloy through experimental and numerical analysis under various stress ratios in axial tension-tension loading condition

Author:

K. Krishna Bhaskar1,K. Janaki Ramaiah1,K. Meera Saheb1,V. Kalyana Manohar1,T. Lakshman Kishore1

Affiliation:

1. University College of Engineering Kakinada (A)

Abstract

Aluminum alloy 6061 is a versatile material widely used in aerospace, automotive, marine, and structural applications due to its mechanical strength, weldability, and corrosion resistance. Understanding and addressing fatigue is crucial for ensuring the reliable and safe performance of components made from this alloy. This study focused on predicting the fatigue life of aluminum 6061 at room temperature under axial loading conditions and evaluating the fatigue life at various stress ratios. The experimental S-N curve, derived from tension-tension fatigue loading tests, was instrumental in characterizing the material's fatigue behaviour under constant amplitude loading condition. The data obtained from these tests were then imported into ANSYS software, a widely recognized tool for finite element analysis and simulation. ANSYS was used to conduct a detailed numerical analysis to predict the fatigue life of aluminum 6061 at different stress ratios. The results from the experimental and numerical analyses exhibited good agreement, validating the accuracy of ANSYS software in predicting fatigue life at different stress ratios. This study demonstrated the effectiveness of employing a combined experimental and numerical approach for understanding fatigue behaviour in materials, particularly in terms of its applicability to different loading scenarios. The findings from this research provide valuable insights into the fatigue life of aluminum 6061 under diverse stress ratios, with the goal of enhancing material design and engineering processes. By leveraging the capabilities of ANSYS software in conjunction with experimental data, the study established a reliable methodology for predicting fatigue life, which is crucial for optimizing the performance and longevity of components subjected to cyclic loading in various industries.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3