Development of an Automatic Interpretation Algorithm for Uroflowmetry Results: Application of Artificial Intelligence

Author:

Choo Min Soo,Ryu Ho Young,Lee SangchulORCID

Abstract

Purpose: To develop an automatic interpretation system for uroflowmetry (UFM) results using machine learning (ML), a form of artificial intelligence (AI).Methods: A prospectively collected 1,574 UFM results (1,031 males, 543 females) with voided volume>150 mL was labelled as normal, borderline, or abnormal by 3 urologists. If the 3 experts disagreed, the majority decision was accepted. Abnormality was defined as a condition in which a urologist judges from the UFM results that further evaluation is required and that the patient should visit a urology clinic. To develop the optimal automatic interpretation system, we applied 4 ML algorithms and 2 deep learning (DL) algorithms. ML models were trained with all UFM parameters. DL models were trained to digitally analyze 2-dimensional images of UFM curves.Results: The automatic interpretation algorithm achieved a maximum accuracy of 88.9% in males and 90.8% in females when using 6 parameters: voided volume, maximum flow rate, time to maximal flow rate, average flow rate, flow time, and voiding time. In females, the DL models showed a dramatic improvement in accuracy over the other models, reaching 95.4% accuracy in the convolutional neural network model. The performance of the DL models in clinical discrimination was outstanding in both genders, with an area under the curve of up to 0.957 in males and 0.974 in females.Conclusions: We developed an automatic interpretation algorithm for UFM results by training AI models using 6 key parameters and the shape of the curve; this algorithm agreed closely with the decisions of urology specialists.

Funder

Seoul National University Bundang Hospital

Korean Continence Society

Korea Medical Device Development Fund

Ministry of Science and ICT

Ministry of Trade, Industry and Energy

Ministry of Health and Welfare

Ministry of Food and Drug Safety

Publisher

Korean Continence Society

Subject

Urology,Neurology (clinical),Neurology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3