Affiliation:
1. Departament de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain
2. Instituto de Ciencias Matemáticas‐ICMAT C/ Nicolás Cabrera n° 13‐15 Campus de Cantoblanco Universidad Autónoma de Madrid Madrid Spain
Abstract
AbstractGiven a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general ‐principle. The flexibility follows from the ‐principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full ‐principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.
Funder
Agencia Estatal de Investigación
Agència de Gestió d'Ajuts Universitaris i de Recerca