An h$h$‐principle for embeddings transverse to a contact structure

Author:

Cardona Robert1ORCID,Presas Francisco2

Affiliation:

1. Departament de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain

2. Instituto de Ciencias Matemáticas‐ICMAT C/ Nicolás Cabrera n° 13‐15 Campus de Cantoblanco Universidad Autónoma de Madrid Madrid Spain

Abstract

AbstractGiven a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general ‐principle. The flexibility follows from the ‐principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full ‐principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.

Funder

Agencia Estatal de Investigación

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

Wiley

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3