Branching random walk with non‐local competition

Author:

Maillard Pascal12,Penington Sarah3ORCID

Affiliation:

1. Institut de Mathématiques de Toulouse, CNRS, UMR5219 Université de Toulouse Toulouse cedex 09 France

2. Institut Universitaire de France Paris France

3. Department of Mathematical Sciences University of Bath, Claverton Down Bath Somerset UK

Abstract

AbstractWe study the Bolker–Pacala–Dieckmann–Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term non‐local competition. This makes the particle system non‐monotone and of infinite‐range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands‐on approach. Some ideas in the proof are inspired by works on the non‐local Fisher‐KPP equation, but the stochasticity of the model creates new difficulties.

Funder

Simons Foundation

Agence Nationale de la Recherche

Royal Society

Publisher

Wiley

Reference70 articles.

1. Branching Brownian Motion with Decay of Mass and the Nonlocal Fisher‐KPP Equation

2. The front location in branching Brownian motion with decay of mass;Addario‐Berry L.;Ann. Probab.,2017

3. Systems of branching, annihilating, and coalescing particles;Athreya S. R.;Electron. J. Probab.,2012

4. Speed of coming down from infinity for birth-and-death processes

5. C.Barnes L.Mytnik andZ.Sun On the coming down from infinity of local time coalescing Brownian motions arXiv preprint arXiv:2211.15298.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3