On the entropy and information of Gaussian mixtures

Author:

Eskenazis Alexandros1,Gavalakis Lampros2ORCID

Affiliation:

1. CNRS, Institut de Mathématiques de Jussieu, Sorbonne Université, France and Trinity College University of Cambridge Cambridge UK

2. Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS LAMA UMR8050 Marne‐la‐Vallée France

Abstract

AbstractWe establish several convexity properties for the entropy and Fisher information of mixtures of centred Gaussian distributions. Firstly, we prove that if are independent scalar Gaussian mixtures, then the entropy of is concave in , thus confirming a conjecture of Ball, Nayar and Tkocz (2016) for this class of random variables. In fact, we prove a generalisation of this assertion which also strengthens a result of Eskenazis, Nayar and Tkocz (2018). For the Fisher information, we extend a convexity result of Bobkov (2022) by showing that the Fisher information matrix is operator convex as a matrix‐valued function acting on densities of mixtures in . As an application, we establish rates for the convergence of the Fisher information matrix of the sum of weighted i.i.d. Gaussian mixtures in the operator norm along the central limit theorem under mild moment assumptions.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3