The emplacement, alteration, subduction and metamorphism of metagranites from the Tso Morari Complex, Ladakh Himalaya

Author:

Bidgood Anna K.ORCID,Waters David J.ORCID,Dyck Brendan J.ORCID,Roberts Nick M.W.ORCID

Abstract

AbstractEclogite-facies mineral assemblages are commonly preserved in mafic protoliths within continental terranes. It is widely accepted that the entirety of these continental terrains must also have been subducted to eclogite-facies conditions. However, evidence that the felsic material transformed at eclogite-facies conditions is lacking. Low-strain metagranites of the ultrahigh-pressure metamorphic Tso Morari Complex in Ladakh, Himalaya, are host to eclogite-facies mafic sills and preserve evidence of subduction to eclogite-facies conditions. Following the eclogite-facies metamorphism, the granites and their gneissic equivalents were overprinted by amphibolite-facies Barrovian metamorphism, obscuring their earlier metamorphic history. We present evidence that the Tso Morari metagranites preserve a complex magmatic, hydrothermal and polymetamorphic history that involved four stages. Stage 1 was magmatic crystallisation, a record of which is preserved in the primary igneous mineralogy and relict igneous microstructures. Monazite grains record a U–Pb age of 474.0 ± 11.6 Ma, concurrent with a published zircon crystallisation age. Stage 2 represents pervasive late-magmatic hydrothermal alteration of the granite during emplacement and is evident in the mineral composition, particularly in the white micas preserved in the igneous domains. Stage 3 involved the (ultra)high-pressure metamorphism of these granite bodies during the Himalayan subduction of continental material. The high-pressure stage of the metamorphic history (>25 kbar at 550–650°C) is preserved as thin coronas of garnet and phengite around igneous biotite, garnet with kyanite inclusions in pseudomorphs after cordierite, and rare palisade quartz textures after coesite. Stage 4 was a result of Barrovian metamorphism of the Tso Morari Complex and is evident in the replacement of garnet by biotite. Many of these features are preserved in localised textural domains in the rock, where local equilibrium was important and the anhydrous conditions limited reaction progress, though aided preservation potential. Collectively, these four stages record a 480 Myr history of metamorphism and reworking of the northernmost Indian plate.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3