Modelling the Antarctic and Northern Hemisphere ice-sheet changes with global climate through the Glacial cycle

Author:

Budd W. F.,Coutts B.,Warner Roland C.

Abstract

The future behaviour of the Antarctic ice sheet depends to some extent on its current state of balance and its past history. The past history is primarily influenced by global climate changes, with some small amount of local feedback, and by sea-level changes generated primarily by the Northern Hemisphere ice-sheet changes, again with a small amount of feedback from the Antarctic ice sheet. An ice-sheet model which includes ice shelves has been used to model the Antarctic region and the whole Northern Hemisphere high-latitude region through the last ice-age cycle. For the climate forcing, the results from the global energy-balance model of Budd and Rayner (1990) are used. These are based on the Earth's orbital radiation changes with ice-sheet albedo feedback. Additional sensitivity studies are carried out for the amplitudes of the derived temperature changes and for changes in precipitation over the ice-sheets. For the Antarctic snow-accumulation changes, the results from the Voslok ice core are used with proportional changes over the rest of the ice sheet. For the sea-level variations, the results generated by the Northern Hemisphere ice-sheet changes provide the primary forcing, but account is also taken of the feedback effects from bed response under changing ice and ocean loading and from the Antarctic changes. The results of the modelling provide a wide range of features for comparison with observations, such as the margins of maximum ice extent. For the Northern Hemisphere the results indicate that the peak mean temperature shift required for the ice-edge region is about -12°C, whereas outside the ice-sheet region this change is smaller but over the ice sheets it is larger. For the Antarctic region during the ice age the interior region decreases in thickness, due to lower accumulation, while the grounding-edge region expands and thickens due to the sea-level lowering. As a result, the derived present state of balance shows a positive region over most of inland East Antarctica, whereas coastal regions tend to be nearer to balance, with some slightly negative regions around some of the large ice shelves and coastal ice streams which are still adjusting slowly to the post-ice-age changes of sea level and accumulation rates.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3