Substituted 3-styryl-2-pyrazoline Derivatives as an Antimalaria: Synthesis, in vitro Assay, Molecular Docking, Druglikeness Analysis and Admet Prediction

Author:

Linda Ekawati Linda Ekawati,Beta Achromi Nurohmah Beta Achromi Nurohmah,Jufrizal Syahri Jufrizal Syahri,Bambang Purwono Bambang Purwono

Abstract

The synthesis, in vitro antimalarial assay, molecular docking, drug-likeness analysis, and ADMET prediction of substituted 3-styryl-2-pyrazoline derivatives as antimalaria have been conducted. The synthesis of N-phenyl (1a‒3a) and N-acetyl-substituted (1b‒3b) 3-styryl-2-pyrazolines was carried out using dibenzalacetone derivatives and hydrazine hydrate or phenylhydrazine. An in vitro antimalarial assay was conducted against the chloroquine-sensitive Plasmodium falciparum 3D7 strain, while molecular docking was performed toward the crystal protein of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) (PDB ID: 1J3I). Furthermore, the prediction of drug-like properties was determined by assessing Lipinski’s rules, and the pharmacokinetic parameters were also studied in-silico, including absorption, distribution, metabolism, excretion, and toxicity (ADMET). The in vitro assay showed that 3a (IC50 0.101 µM) has excellent antimalarial activity, followed by 2a (0.177 µM), and 1b (0.258 µM). Molecular docking has supported the in vitro assay by showing the lowest CDOCKER energy for 3a (‒56.316 kcal/mol), then 2a (‒51.2603 kcal/mol), and 1b (‒48.8774 kcal/mol). The drug-like properties showed that all of the prepared compounds were acceptable based on Lipinski’s rules and predicted to be potentially orally bioavailable. The ADMET analysis provided information that 3a and 2a could be proposed as the best lead antimalarial drugs with further modification to reduce the lipophilicity and toxicity properties.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3