Enhancing Arsenate Removal Efficiency Using Sewater Bittern-Derived MgO Nanoparticles/PVDF-HFP Electrospun Nanofibre Composites

Author:

Asnan Rinovian Asnan Rinovian,Muhamad Nasir Muhamad Nasir,Muhammad Ali Zulfikar Muhammad Ali Zulfikar,Purwajanti Swasmi,Nugraha Nugraha,Handayani Nurrahmi,Suradharmika I Gusti Agung,Fitri Dara Fitri Dara

Abstract

MgO nanoparticles (MgO NPs) incorporated PVDF-HFP nanofibers have been synthesized using the electrospinning method to remove arsenic from polluted water. MgO nanoparticles were synthesized from seawater bitterns and used as magnesium precursors. The synthesized materials were characterized using various techniques, and their adsorption capacities were evaluated against arsenic under different conditions. The results showed that the maximum adsorption for As(V) adsorption was 41.47 mg g-1 for PVDF-HFP/MgO 30% (w/w), which equals 179.69 mg g-1 based on the weight of bare MgO NPs and achieved at pH 11, a contact time of 420 minutes, and an adsorbent weight of 0.0125 g. Incorporating MgO NPs into the nanofiber matrix can enhance its stability, further increase the adsorption capacity. This study demonstrates the potential of using PVDF-HFP/MgO nanofiber composites to treat arsenic-containing wastewater and further provide commercial benefits for seawater bitterns by serving as a precursor for producing functional nanomaterials.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3