Machine Learning for Mapping and Forecasting Poverty in North Sumatera: A Data-Driven Approach

Author:

Arnita Arnita,Marpaung Faridawaty,Ramadhani Fanny,Dinata Dewan

Abstract

Discussing poverty is crucial because it affects many facets of society, including socioeconomic disparity, crime, and the inability to obtain high-quality education. One of the provinces with the highest poverty rate in Indonesia is North Sumatra. A strategy is required to gather accurate data to effectively reduce poverty. Poverty mapping and prediction were conducted in North Sumatra to get a precise spatial distribution of poverty, the operation of the poverty model, and forecasting using machine learning (ML). Poverty prediction was conducted using a random forest (RF) algorithm and poverty mapping was conducted using the K-Means algorithm. The poverty mapping showed a significant inertia value decline in the third and fourth clusters of the elbow graph. The third cluster (0.313) was superior to the fourth cluster (0.244) in the silhouette index. Thus, there were three poverty clusters - low, medium, and high - that were used in the model. The best model was created using the grid search cross-validation, while the best prediction results were created using the RF algorithm, with the following parameters: n-estimator = 50, max depth = 10, min samples split = 2, and min samples leaf = 1. The mean squared error (MSE) of the RF model's predictions was 0.002617, or satisfactory precision.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3