The Effect of the Rheocast Process on the Microstructure and Mechanical Properties of Al-5.7Si-2Cu-0.3Mg Alloy

Author:

Abdelgnei Mnel A H, ,Omar Mohd Zaidi,Ghazali Mariyam Jameelah,Gebril Mohamed A.,Mohammed M N, , , ,

Abstract

This study shows the results of an experimental investigation of semisolid rheocasting of Al-5.7Si-2Cu-0.3Mg alloy using a cooling slope (CS) casting technique. However, the challenge is to determine process parameters of the CS process to get a desirable microstructure in the semisolid feedstock material. cooling slope technique was employed to create feedstock material for thixoforming under an argon gas atmosphere, where on an inclined plate that was fixed at a 60° slope angle, molten alloy is poured at different temperatures of 640°C, 650°C and 660°C at lengths 300, 400 and 500 mm. Examination the microstructure with optical microscope observed that the microstructure of conventionally cast alloy presented coarse and dendritic primary α-Al phase, whereas rheocast alloy included fine and nondendritic primary α-Al phase with homogeneous distribution of eutectic phase. The best CS processing condition has been identified for optimum pouring temperature of 650°C and the slope length of 400 mm as average globular grain size of around 31.67 ± 3 μm and a shape factor of about 0.66 ± 0.09 were obtained. The mechanical properties of conventional cast alloy were enhanced by the CS casting process. The ultimate tensile strength, the yield strength and elongation of the rheocast alloy were increased by 10%, 12% and 22% respectively compared to the conventional cast alloy. due to a reduction in shrinkage and porosity of the microstructure of the CS alloy.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3