Efficient Document Retrieval System using Locality Sensitive Hashing Nearest Neighbor Algorithm and Weighted Jaccard Distance for Retrieving Closest Personalities

Author:

George E. Ben, ,Rosline G. Jeba,Balasupramanian N.,Blessing N.R.Wilfred, , ,

Abstract

The process of retrieving significant documents based on the search key from a corpus has been a vital research problem in the information retrieval field. This paper proposes an efficient way to retrieve documents related to different personalities extracted from Wikipedia. The proposed method utilizes the Locality Sensitive Hashing Nearest Neighbor algorithm combined with Weighted Jaccard Distance to measure document similarity with enhanced precision. This document retrieval system demonstrates competitive performance compared to existing methods in the Personality Identification domain. The introduction of a document centroid normalization technique significantly improves the effectiveness of information retrieval by enabling better discrimination between documents. The personality document search results were compared for different distance measures using performance metrics like Normalized Discounted Cumulative Gain and Mean Average Precision. The results presented in this paper show that the TF-IDF scheme with Locality Sensitive Hashing Nearest Neighbor Algorithm using the Weighted Jaccard Distance can yield superior retrieval efficiency when contrasted with alternative approaches found in the existing literature.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3