Palm Oil Milling Effluent (POME) Waste Processing by Using Microalgae Chlamydomonas sp.

Author:

Yonas Riky1,Irzandi Uray1,Satriadi Hantoro1,Widayat W.1,Christwardana Marcelinus2ORCID,Hadiyanto H.3

Affiliation:

1. Department of Chemical Engineering, Diponegoro University, Indonesia

2. Center of Biomass and Renewable Energy (CBIORE) , Department of Chemistry, Diponegoro University

3. School of Postgraduate Studies, Diponegoro University, Indonesia

Abstract

Along with the growth in oil palm output, the amount of trash produced will also increase. Every palm oil mill is responsible for the disposal of liquid waste known as palm oil mill effluent (POME). POME includes very high levels of BOD and COD, which may hinder the development of microalgae. Before POME may be utilized as a medium for the growth and development of microalgae, a detailed investigation is required to establish the pretreatment measures necessary to reduce the BOD and COD levels. The purpose of this investigation of POME waste as a substrate for the growth and development of microalgae is to examine the POME processing procedure utilizing wild microalgae. The experimental technique consisted of adding POME and microalgae to the Erlemeyer in accordance with the required proportion. Research demonstrates that POME pond IV waste may be utilized as a substrate for the development of wild microalgae to lower POME waste BOD and COD levels. The variables used were the ratio of POME to microalgae volume and the quantity of nutrients supplied. Microalgae growth at a ratio of 1:4 produced the greatest decreases in BOD and COD, namely 61.66 ppm and 173.33 ppm from 110.6 ppm and 496.67 ppm, respectively. The impact of adding nutrient C at a concentration of 120 ppm led to the greatest decrease of BOD and COD, namely 65.33 ppm and 186.67 ppm, whereas adding nutrient N at a concentration of 40 ppm led to the greatest reduction of BOD and COD, namely 55.41 ppm and 158.33 ppm.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3