Investigations on the Influence of Surface Textures on Optical Reflectance of Multi-crystalline Silicone (MC-Si) Crystal Surfaces-Simulations and Experiments

Author:

Ullattil Sudeep1ORCID,Kakkarath Sudheesh1,Viswambharanunnithan Vinod1,Ramannair Suresh Padiyath1

Affiliation:

1. Department of Mechanical Engineering, NSS College of Engineering Palakkad, Kerala 678008, India

Abstract

MC-Si is the most widely used material for making solar PV cells. In spite of the considerable research on improving the conversion efficiency of MC-Si solar PV cells still it remains well within the range of 15-20%. Optical reflectance being the major loss of incident solar energy, efforts are being made to reduce the optical reflectance of solar cell surfaces. Among the several methods proposed, creation of well-defined surface topography on the cell surface remains a promising option. Micro/nano level features with various dimensions and distributions have been created on MC-Si crystal surfaces using a femto-second pulsed laser and the influence of surface topography on optical reflectance in the incident light wave length of 350 – 1000 nm have been studied and compared with the simulation results obtained using OPAL2 software. Experimental results indicate that surface textures on the wafer surface lead to the reduction of optical reflectance in the range of 20-35% in comparison with plain surface. Width of micro grooves have less significant effect on the optical reflectance in comparison with pitch between the micro grooves. Best reduction in reflectance is exhibited by the texture having a groove width of 30 mm and a pitch of 100 mm. A post texturing etching operation is found to have detrimental effect on the ability of micro/nano level features in decreasing the optical reflectance in the preferred wavelength of solar spectrum due to the flattening of nano level features created within the micro grooves due to laser texturing.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3