Effect of Fluid Flow Direction on Charging of Multitube Thermal Energy Storage for Flat Plate Solar Collectors

Author:

Senthil Ramalingam1ORCID

Affiliation:

1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai

Abstract

Flat plate solar collector plays a significant role in domestic water heating due to the ease of operation and maintenance. Thermal energy storage with phase change materials is used to store heat energy. The thermal performance of paraffin wax-based multitube latent heat storage with a flat plate solar collector is investigated experimentally. The present work focuses on the fluid flow direction for charging and discharging in a vertical multitube-based thermal storage unit. The charging process took about four hours, with a fluid flow rate of 0.02 kg/s at about 70°C. The flat plate solar collector's thermal efficiency is 56.42% for the fluid flow rate of 0.02 kg/s at the average solar radiation of about 600 W/m2. During the discharge process, there was an increase in water temperature by 40°C at a fluid flow rate of 0.01 kg/s in 30 minutes. The 25-liters of water is circulated to discharge the stored heat. The heat storage effectiveness is varied between about 0.4 and 0.75. During the discharge, the flow of water from the center to the periphery showed about a 1.7% higher temperature than that of the water from the periphery to the center. For charging the heat storage, the preferred fluid flow mode is from the periphery to the center. The employment of latent heat storage with a solar collector is beneficial for our thermal needs after sunshine hours.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3