Spatial structure of fungal DNA assemblages revealed with eDNA metabarcoding in a forest river network in western Japan

Author:

Matsuoka ShunsukeORCID,Sugiyama Yoriko,Sato Hirotoshi,Katano Izumi,Harada Ken,Doi Hideyuki

Abstract

Growing evidence has revealed high diversity and spatial heterogeneity of fungal communities in local habitats of terrestrial ecosystems. Recently, the analysis of environmental DNA has been undertaken to study the biodiversity of organisms, such as animals and plants, in both aquatic and terrestrial habitats. In the present study, we investigated fungal DNA assemblages and their spatial structure using environmental DNA metabarcoding targeting the internal transcribed spacer 1 (ITS1) region of the rRNA gene cluster in habitats across different branches of rivers in forest landscapes. A total of 1,956 operational taxonomic units (OTUs) were detected. Of these, 770 were assigned as Ascomycota, 177 as Basidiomycota, and 38 as Chytridiomycota. The river water was found to contain functionally diverse OTUs of both aquatic and terrestrial fungi, such as plant decomposers and mycorrhizal fungi. These fungal DNA assemblages were more similar within, rather than between, river branches. In addition, the assemblages were more similar between spatially closer branches. This spatial structuring was significantly associated with geographic distances but not with vegetation of the catchment area and the elevation at the sampling points. Our results imply that information on the terrestrial and aquatic fungal compositions of watersheds, and therefore their spatial structure, can be obtained by investigating the fungal DNA assemblages in river water.

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3