Hidden in the blow - a matrix to characterise cetaceans’ respiratory microbiome: short-finned pilot whale as case study

Author:

Santos Beatriz,Afonso LuísORCID,Alves FilipeORCID,Dinis AnaORCID,Ferreira RitaORCID,Correia Ana M.ORCID,Valente RaulORCID,Gil ÁgathaORCID,Castro Luis Filipe C.ORCID,Sousa-Pinto IsabelORCID,Rosso MassimilianoORCID,Centelleghe Cinzia,Mazzariol SandroORCID,Magalhães Catarina,Tomasino Maria PaolaORCID

Abstract

Cetaceans are key sentinel species of marine ecosystems and ocean health, being a strategic taxonomic group that evaluates the well-being of aquatic habitats and detects harmful environmental trends. Respiratory diseases are amongst the main causes of death in these animals, so identifying the microbiome community in their exhaled breath condensates (EBC), i.e. blow, has been proposed as a key biomarker for assessing respiratory health. Yet, to characterise microbiomes related to these animals’ respiratory tract and use them as a proxy for health status, it is necessary to develop baseline data on the microorganisms associated with cetaceans. Here, the short-finned pilot whale (SFPW, Globicephala macrorhynchus) was used as a case study to validate the most suitable primer set to explore the prokaryotic diversity of the cetaceans’ respiratory tract. DNA extracted from blow samples (n = 12) of animals off Madeira Island was sequenced to amplify both V3-V4 and V4-V5 hypervariable regions of the 16S rRNA gene, using the same sequencing platform (Illumina MiSeq). Independently of the primer set used, all blows shared Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla in their composition. V3-V4 resulted in a higher diversity of taxa with relative abundance above 1%, whereas the V4-V5 primers captured a higher number of microbial Amplicon Sequence Variants, detecting the rare microbial biosphere with pathogen potential. Additionally, it captured the core microbiome more efficiently. Thus, this study provides a detailed characterisation of SFPW respiratory-associated microbial communities, strengthening the idea of sociality influencing microbiome composition in the respiratory tract. Moreover, it supports the use of blow as a relevant biomarker for the physiological state of the airways in free-ranging cetaceans.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3