Climate Field Completion via Markov Random Fields: Application to the HadCRUT4.6 Temperature Dataset

Author:

Vaccaro Adam1,Emile-Geay Julien1,Guillot Dominque2,Verna Resherle1,Morice Colin3,Kennedy John3,Rajaratnam Bala4

Affiliation:

1. a Department of Earth Sciences, University of Southern California, Los Angeles, California

2. b Department of Mathematical Sciences, University of Delaware, Newark, Delaware

3. c Met Office Hadley Centre, Exeter, United Kingdom

4. d Department of Statistics, University of California, Davis, Davis, California

Abstract

AbstractSurface temperature is a vital metric of Earth’s climate state but is incompletely observed in both space and time: over half of monthly values are missing from the widely used HadCRUT4.6 global surface temperature dataset. Here we apply the graphical expectation–maximization algorithm (GraphEM), a recently developed imputation method, to construct a spatially complete estimate of HadCRUT4.6 temperatures. GraphEM leverages Gaussian Markov random fields (also known as Gaussian graphical models) to better estimate covariance relationships within a climate field, detecting anisotropic features such as land–ocean contrasts, orography, ocean currents, and wave-propagation pathways. This detection leads to improved estimates of missing values compared to methods (such as kriging) that assume isotropic covariance relationships, as we show with real and synthetic data. This interpolated analysis of HadCRUT4.6 data is available as a 100-member ensemble, propagating information about sampling variability available from the original HadCRUT4.6 dataset. A comparison of Niño-3.4 and global mean monthly temperature series with published datasets reveals similarities and differences due in part to the spatial interpolation method. Notably, the GraphEM-completed HadCRUT4.6 global temperature displays a stronger early twenty-first-century warming trend than its uninterpolated counterpart, consistent with recent analyses using other datasets. Known events like the 1877/78 El Niño are recovered with greater fidelity than with kriging, and result in different assessments of changes in ENSO variability through time. Gaussian Markov random fields provide a more geophysically motivated way to impute missing values in climate fields, and the associated graph provides a powerful tool to analyze the structure of teleconnection patterns. We close with a discussion of wider applications of Markov random fields in climate science.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3