A Consistent Hybrid Variational-Smoothing Data Assimilation Method: Application to a Simple Shallow-Water Model of the Turbulent Midlatitude Ocean

Author:

Krysta Monika1,Blayo Eric2,Cosme Emmanuel3,Verron Jacques3

Affiliation:

1. Laboratoire des Ecoulements Géophysiques et Industriels, and Laboratoire Jean Kuntzmann, Grenoble, France

2. Laboratoire Jean Kuntzmann, Grenoble, France

3. Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble, France

Abstract

Abstract In the standard four-dimensional variational data assimilation (4D-Var) algorithm the background error covariance matrix remains static over time. It may therefore be unable to correctly take into account the information accumulated by a system into which data are gradually being assimilated. A possible method for remedying this flaw is presented and tested in this paper. A hybrid variational-smoothing algorithm is based on a reduced-rank incremental 4D-Var. Its consistent coupling to a singular evolutive extended Kalman (SEEK) smoother ensures the evolution of the matrix. In the analysis step, a low-dimensional error covariance matrix is updated so as to take into account the increased confidence level in the state vector it describes, once the observations have been introduced into the system. In the forecast step, the basis spanning the corresponding control subspace is propagated via the tangent linear model. The hybrid method is implemented and tested in twin experiments employing a shallow-water model. The background error covariance matrix is initialized using an EOF decomposition of a sample of model states. The quality of the analyses and the information content in the bases spanning control subspaces are also assessed. Several numerical experiments are conducted that differ with regard to the initialization of the matrix. The feasibility of the method is illustrated. Since improvement due to the hybrid method is not universal, configurations that benefit from employing it instead of the standard 4D-Var are described and an explanation of the possible reasons for this is proposed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. Dynamical evolution of the error statistics with the SEEK filter to assimilate altimetric data in eddy-resolving ocean models;Ballabrera-Poy;Quart. J. Roy. Meteor. Soc.,2001

2. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances;Bannister;Quart. J. Roy. Meteor. Soc.,2008

3. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics;Bannister;Quart. J. Roy. Meteor. Soc.,2008

4. Singular-vector-based covariance propagation in a quasigeostrophic assimilation system;Beck;Mon. Wea. Rev.,2005

5. Assimilation variationnelle de données en océanographie et réduction de la dimension de l’espace de contrôle (Variational data assimilation in oceanography and reduction of the control-space dimension);Blayo,1998

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3