Multiproduct Characterization of Surface Soil Moisture Drydowns in the United Kingdom

Author:

Tso Chak-Hau Michael1ORCID,Blyth Eleanor2,Tanguy Maliko2,Levy Peter E.3,Robinson Emma L.2,Bell Victoria2,Zha Yuanyuan4,Fry Matthew2

Affiliation:

1. a U.K. Centre for Ecology and Hydrology, Lancaster, United Kingdom

2. b U.K. Centre for Ecology and Hydrology, Wallingford, United Kingdom

3. c U.K. Centre for Ecology and Hydrology, Edinburgh, United Kingdom

4. d State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Abstract

Abstract The persistence or memory of soil moisture (θ) after rainfall has substantial environmental implications. Much work has been done to study soil moisture drydown for in situ and satellite data separately. In this work, we present a comparison of drydown characteristics across multiple U.K. soil moisture products, including satellite-merged (i.e., TCM), in situ (i.e., COSMOS-UK), hydrological model [i.e., Grid-to-Grid (G2G)], statistical model [i.e., Soil Moisture U.K. (SMUK)], and land surface model (LSM) [i.e., Climate Hydrology and Ecology research Support System (CHESS)] data. The drydown decay time scale (τ) for all gridded products is computed at an unprecedented resolution of 1–2 km, a scale relevant to weather and climate models. While their range of τ differs (except SMUK and CHESS are similar) due to differences such as sensing depths, their spatial patterns are correlated to land cover and soil types. We further analyze the occurrence of drydown events at COSMOS-UK sites. We show that soil moisture drydown regimes exhibit strong seasonal dependencies, whereby the soil dries out quicker in summer than winter. These seasonal dependencies are important to consider during model benchmarking and evaluation. We show that fitted τ based on COSMOS and LSM are well correlated, with a bias of lower τ for COSMOS. Our findings contribute to a growing body of literature to characterize τ, with the aim of developing a method to systematically validate model soil moisture products at a range of scales. Significance Statement While important for many aspects of the environment, the evaluation of modeled soil moisture has remained incredibly challenging. Sensors work at different space and time scales to the models, the definitions of soil moisture vary between applications, and the soil moisture itself is subject to the soil properties while the impact of the soil moisture on evaporation or river flow is more dependent on its variation in time and space than its absolute value. What we need is a method that allows us to compare the important features of soil moisture rather than its value. In this study, we choose to study drydown as a way to capture and compare the behavior of different soil moisture data products.

Funder

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference120 articles.

1. Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method;Abbaszadeh, P.,2019

2. Estimation of landscape soil water losses from satellite observations of soil moisture;Akbar, R.,2018a

3. Hydrological storage length scales represented by remote sensing estimates of soil moisture and precipitation;Akbar, R.,2018b

4. Ground, proximal and satellite remote sensing of soil moisture;Babaeian, E.,2019

5. Soil moisture from fusion of scatterometer and SAR: Closing the scale gap with temporal filtering;Bauer-Marschallinger, B.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3