Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm

Author:

Dinku Tufa1,Anagnostou Emmanouil N.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Abstract

Abstract The Tropical Rainfall Measuring Mission (TRMM) satellite carries a combination of active [precipitation radar (PR)] and multichannel passive microwave [the TRMM Microwave Imager (TMI)] sensors, which advance our ability to estimate rainfall over land. Rain retrieval from the TRMM PR is associated with an unprecedented accuracy and resolution but is limited in terms of sampling because of the narrow PR swath width (215 km). TMI provides wider coverage (760 km), but its observations are associated with a more complex relationship to precipitation in comparison with PR (especially over land). The PR rain estimates are used here for calibrating an overland TMI rain algorithm. The algorithm consists of 1) multichannel-based rain screening and convective/stratiform (C/S) classification schemes, and 2) nonlinear (linear) regressions for the rain-rate retrieval of stratiform (convective) rain regimes. This study examines regional differences in the algorithm performance. Four geographic regions consisting of central Africa (AFC), the Amazon (AMZ), the U.S. southern Plains (USA), and the Ganges–Brahmaputra–Meghna River basin (GBM) in south Asia are selected. Data from three summer months of 2000 and 2001 are used for calibration; validation is done using summer 2002 data. The current algorithm is also compared with the latest [version 6 (V6)] TRMM 2A12 product in terms of rain detection, and rain-rate retrieval error statistics on the basis of PR reference rainfall. The performance of the algorithm is different for the different regions. For instance, the reduction in random error (relative to 2A12 V6) is about 24%, 36%, 57%, and 165% for USA, AFC, AMZ, and GBM, respectively. However, significant difference between global (the four regions combined) and regional calibration is observed only for the GBM region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3