Impact of Assimilating Dropsonde Observations from MPEX on Ensemble Forecasts of Severe Weather Events

Author:

Romine Glen S.1,Schwartz Craig S.1,Torn Ryan D.1,Weisman Morris L.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Over the central Great Plains, mid- to upper-tropospheric weather disturbances often modulate severe storm development. These disturbances frequently pass over the Intermountain West region of the United States during the early morning hours preceding severe weather events. This region has fewer in situ observations of the atmospheric state compared with most other areas of the United States, contributing toward greater uncertainty in forecast initial conditions. Assimilation of supplemental observations is hypothesized to reduce initial condition uncertainty and improve forecasts of high-impact weather. During the spring of 2013, the Mesoscale Predictability Experiment (MPEX) leveraged ensemble-based targeting methods to key in on regions where enhanced observations might reduce mesoscale forecast uncertainty. Observations were obtained with dropsondes released from the NSF/NCAR Gulfstream-V aircraft during the early morning hours preceding 15 severe weather events over areas upstream from anticipated convection. Retrospective data-denial experiments are conducted to evaluate the value of dropsonde observations in improving convection-permitting ensemble forecasts. Results show considerable variation in forecast performance from assimilating dropsonde observations, with a modest but statistically significant improvement, akin to prior targeted observation studies that focused on synoptic-scale prediction. The change in forecast skill with dropsonde information was not sensitive to the skill of the control forecast. Events with large positive impact sampled both the disturbance and adjacent flow, akin to results from past synoptic-scale targeting studies, suggesting that sampling both the disturbance and adjacent flow is necessary regardless of the horizontal scale of the feature of interest.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3