CMIP5 Diversity in Southern Westerly Jet Projections Related to Historical Sea Ice Area: Strong Link to Strengthening and Weak Link to Shift

Author:

Bracegirdle Thomas J.1,Hyder Patrick2,Holmes Caroline R.1

Affiliation:

1. British Antarctic Survey, Cambridge, United Kingdom

2. Met Office Hadley Centre, Exeter, United Kingdom

Abstract

Abstract A major feature of projected changes in Southern Hemisphere climate under future scenarios of increased greenhouse gas concentrations is the poleward shift and strengthening of the main eddy-driven belt of midlatitude, near-surface westerly winds (the westerly jet). However, there is large uncertainty in projected twenty-first-century westerly jet changes across different climate models. Here models from the World Climate Research Programme’s phase 5 of the Coupled Model Intercomparison Project (CMIP5) were evaluated to assess linkages between diversity in simulated sea ice area (SIA), Antarctic amplification, and diversity in projected twenty-first-century changes in the westerly jet following the representative concentration pathway 8.5 (RCP8.5) scenario. To help disentangle cause and effect in the coupled model analysis, uncoupled atmosphere-only fixed sea surface experiments from CMIP5 were also evaluated. It is shown that across all seasons, approximately half of the variance in projected RCP8.5 jet strengthening is explained statistically by intermodel differences in simulated historical SIA, whereby CMIP5 models with larger baseline SIA exhibit more ice retreat and less jet strengthening in the future. However, links to jet shift are much weaker and are only statistically significant in austral autumn and winter. It is suggested that a significant cross-model correlation between historical jet strength and projected strength change (r = −0.58) is, at least in part, a result of atmospherically driven historical SIA biases, which then feed back into the atmosphere in future projections. The results emphasize that SIA appears to act in concert with proximal changes in sea surface temperature gradients in relation to model diversity in westerly jet projections.

Funder

Natural Environment Research Council

The Research Council of Norway

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3