The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly?

Author:

Deser Clara1,Simpson Isla R.1,McKinnon Karen A.1,Phillips Adam S.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Application of random sampling techniques to composite differences between 18 El Niño and 14 La Niña events observed since 1920 reveals considerable uncertainty in both the pattern and amplitude of the Northern Hemisphere extratropical winter sea level pressure (SLP) response to ENSO. While the SLP responses over the North Pacific and North America are robust to sampling variability, their magnitudes can vary by a factor of 2; other regions, such as the Arctic, North Atlantic, and Europe are less robust in their SLP patterns, amplitudes, and statistical significance. The uncertainties on the observed ENSO composite are shown to arise mainly from atmospheric internal variability as opposed to ENSO diversity. These observational findings pose considerable challenges for the evaluation of ENSO teleconnections in models. An approach is proposed that incorporates both pattern and amplitude uncertainty in the observational target, allowing for discrimination between true model biases in the forced ENSO response and apparent model biases that arise from limited sampling of non-ENSO-related internal variability. Large initial-condition coupled model ensembles with realistic tropical Pacific sea surface temperature anomaly evolution during 1920–2013 show similar levels of uncertainty in their ENSO teleconnections as found in observations. Because the set of ENSO events in each of the model composites is the same (and identical to that in observations), these uncertainties are entirely attributable to sampling fluctuations arising from internal variability, which is shown to originate from atmospheric processes. The initial-condition model ensembles thus inform the interpretation of the single observed ENSO composite and vice versa.

Funder

University Corporation for Atmospheric Research

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3