An Objective Bayesian Improved Approach for Applying Optimal Fingerprint Techniques to Estimate Climate Sensitivity*

Author:

Lewis Nicholas1

Affiliation:

1. Bath, United Kingdom

Abstract

Abstract A detailed reanalysis is presented of a “Bayesian” climate parameter study (as exemplified by Forest et al.) that estimates climate sensitivity (ECS) jointly with effective ocean diffusivity and aerosol forcing, using optimal fingerprints to compare multidecadal observations with simulations by the Massachusetts Institute of Technology 2D climate model at varying settings of the three climate parameters. Use of improved methodology primarily accounts for the 90% confidence bounds for ECS reducing from 2.1–8.9 K to 2.0–3.6 K. The revised methodology uses Bayes's theorem to derive a probability density function (PDF) for the whitened (made independent using an optimal fingerprint transformation) observations, for which a uniform prior is known to be noninformative. A dimensionally reducing change of variables onto the parameter surface is then made, deriving an objective joint PDF for the climate parameters. The PDF conversion factor from the whitened variables space to the parameter surface represents a noninformative joint parameter prior, which is far from uniform. The noninformative prior prevents more probability than data uncertainty distributions warrant being assigned to regions where data respond little to parameter changes, producing better-constrained PDFs. Incorporating 6 years of unused model simulation data and revising the experimental design to improve diagnostic power reduces the best-fit climate sensitivity. Employing the improved methodology, preferred 90% bounds of 1.2–2.2 K for ECS are then derived (mode and median 1.6 K). The mode is identical to those from Aldrin et al. and [using the same Met Office Hadley Centre Climate Research Unit temperature, version 4 (HadCRUT4), observational dataset] from Ring et al. Incorporating nonaerosol forcing and observational surface temperature uncertainties, unlike in the original study, widens the 90% range to 1.0–3.0 K.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3