The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss

Author:

Årthun Marius1,Eldevik Tor1,Smedsrud Lars H.1

Affiliation:

1. Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Abstract

AbstractDuring recent decades Arctic sea ice variability and retreat during winter have largely been a result of variable ocean heat transport (OHT). Here we use the Community Earth System Model (CESM) large ensemble simulation to disentangle internally and externally forced winter Arctic sea ice variability, and to assess to what extent future winter sea ice variability and trends are driven by Atlantic heat transport. We find that OHT into the Barents Sea has been, and is at present, a major source of internal Arctic winter sea ice variability and predictability. In a warming world (RCP8.5), OHT remains a good predictor of winter sea ice variability, although the relation weakens as the sea ice retreats beyond the Barents Sea. Warm Atlantic water gradually spreads downstream from the Barents Sea and farther into the Arctic Ocean, leading to a reduced sea ice cover and substantial changes in sea ice thickness. The future long-term increase in Atlantic heat transport is carried by warmer water as the current itself is found to weaken. The externally forced weakening of the Atlantic inflow to the Barents Sea is in contrast to a strengthening of the Nordic Seas circulation, and is thus not directly related to a slowdown of the Atlantic meridional overturning circulation (AMOC). The weakened Barents Sea inflow rather results from regional atmospheric circulation trends acting to change the relative strength of Atlantic water pathways into the Arctic. Internal OHT variability is associated with both upstream ocean circulation changes, including AMOC, and large-scale atmospheric circulation anomalies reminiscent of the Arctic Oscillation.

Funder

Norges Forskningsråd

H2020 European Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3