How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region?

Author:

Bao Xinghua1,Zhang Fuqing2ORCID

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. Center for Advanced Data Assimilation and Predictability Techniques, and Department of Meteorology and Atmospheric Science, The Pennsylvania State University, State College, Pennsylvania

Abstract

AbstractMore than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

Funder

National Natural Science Foundation of China

Third Tibetan Plateau Atmospheric Experiment

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3