Trend Analysis with a New Global Record of Tropical Cyclone Intensity

Author:

Kossin James P.1,Olander Timothy L.2,Knapp Kenneth R.3

Affiliation:

1. NOAA/National Climatic Data Center, Asheville, North Carolina, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

2. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

3. NOAA/National Climatic Data Center, Asheville, North Carolina

Abstract

Abstract The historical global “best track” records of tropical cyclones extend back to the mid-nineteenth century in some regions, but formal analysis of these records is encumbered by temporal heterogeneities in the data. This is particularly problematic when attempting to detect trends in tropical cyclone metrics that may be attributable to climate change. Here the authors apply a state-of-the-art automated algorithm to a globally homogenized satellite data record to create a more temporally consistent record of tropical cyclone intensity within the period 1982–2009, and utilize this record to investigate the robustness of trends found in the best-track data. In particular, the lifetime maximum intensity (LMI) achieved by each reported storm is calculated and the frequency distribution of LMI is tested for changes over this period. To address the unique issues in regions around the Indian Ocean, which result from a discontinuity introduced into the satellite data in 1998, a direct homogenization procedure is applied in which post-1998 data are degraded to pre-1998 standards. This additional homogenization step is found to measurably reduce LMI trends, but the global trends in the LMI of the strongest storms remain positive, with amplitudes of around +1 m s−1 decade−1 and p value = 0.1. Regional trends, in m s−1 decade−1, vary from −2 (p = 0.03) in the western North Pacific, +1.7 (p = 0.06) in the south Indian Ocean, +2.5 (p = 0.09) in the South Pacific, to +8 (p < 0.001) in the North Atlantic.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 248 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3