Probabilistic Multisite Statistical Downscaling for Daily Precipitation Using a Bernoulli–Generalized Pareto Multivariate Autoregressive Model

Author:

Ben Alaya M. A.1,Chebana F.1,Ouarda T. B. M. J.2

Affiliation:

1. Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec City, Québec, Canada

2. Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec City, Québec, Canada

Abstract

Abstract A Bernoulli–generalized Pareto multivariate autoregressive (BMAR) model is proposed in this paper for multisite statistical downscaling of daily precipitation. The proposed model relies on a probabilistic framework to describe the conditional probability density function of precipitation at each station for a given day and handles multivariate dependence in both time and space using a multivariate autoregressive model. Within a probabilistic framework, BMAR employs a regression model whose outputs are parameters of the mixed Bernoulli–generalized Pareto distribution. As a stochastic component, the BMAR employs a latent multivariate autoregressive Gaussian field to preserve lag-0 and lag-1 cross correlations of precipitation at multiple sites. The proposed model is applied for the downscaling of AOGCM data to daily precipitation in the southern part of Québec, Canada. Reanalysis products are used in this study to assess the potential of the proposed method. Based on the mean errors (MEs), the root-mean-square errors (RMSEs), precipitation indices, and the ability to preserve lag-0 and lag-1 cross correlation, results of the study indicate the superiority of the proposed model over a multivariate multiple linear regression (MMLR) model and a multisite hybrid statistical downscaling procedure that combines MMLR and stochastic generator schemes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3