An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

Author:

Bell Michael M.1,Montgomery Michael T.2,Lee Wen-Chau3

Affiliation:

1. Naval Postgraduate School, Monterey, California, and National Center for Atmospheric Research,* Boulder, Colorado

2. Naval Postgraduate School, Monterey, California, and NOAA/AOML Hurricane Research Division, Miami, Florida

3. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent eyewall replacement. During the approximately 1-day observation period, developing convection associated with the secondary eyewall became more symmetric and contracted inward. Latent heating in the emergent secondary eyewall led to the development of a distinct toroidal (overturning) circulation with inertially constrained radial inflow above the boundary layer and compensating subsidence in the moat region, properties that are consistent broadly with the balanced vortex response to an imposed ring of diabatic heating outside the primary eyewall. The primary eyewall’s convection became more asymmetric during the observation period, but the primary eyewall was still the dominant swirling wind and vorticity structure throughout the period. The observed structure and evolution of Rita’s secondary eyewall suggest that spinup of the tangential winds occurred both within and above the boundary layer, and that both balanced and unbalanced dynamical processes played an important role. Although Rita’s core intensity decreased during the observation period, the observations indicate a 125% increase in areal extent of hurricane-force winds and a 19% increase in integrated kinetic energy resulting from the eyewall replacement.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3