Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST

Author:

Bell Michael M.1,Montgomery Michael T.2,Emanuel Kerry A.3

Affiliation:

1. Department of Meteorology, Naval Postgraduate School, Monterey, California, and National Center for Atmospheric Research,* Boulder, Colorado

2. Department of Meteorology, Naval Postgraduate School, Monterey, California, and NOAA/Hurricane Research Division, Miami, Florida

3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract Quantifying air–sea exchanges of enthalpy and momentum is important for understanding and skillfully predicting tropical cyclone intensity, but the magnitude of the corresponding wind speed–dependent bulk exchange coefficients is largely unknown at major hurricane wind speeds greater than 50 m s−1. Since direct turbulent flux measurements in these conditions are extremely difficult, the momentum and enthalpy fluxes were deduced via absolute angular momentum and total energy budgets. An error analysis of the methodology was performed to quantify and mitigate potentially significant uncertainties resulting from unresolved budget terms and observational errors. An analysis of six missions from the 2003 Coupled Boundary Layers Air–Sea Transfer (CBLAST) field program in major hurricanes Fabian and Isabel was conducted using a new variational technique. The analysis indicates a near-surface mean drag coefficient CD of 2.4 × 10−3 with a 46% standard deviation and a mean enthalpy coefficient CK of 1.0 × 10−3 with a 40% standard deviation for wind speeds between 52 and 72 m s−1. These are the first known estimates of CK and the ratio of enthalpy to drag coefficient CK/CD in major hurricanes. The results suggest that there is no significant change in the magnitude of the bulk exchange coefficients estimated at minimal hurricane wind speeds, and that the ratio CK/CD does not significantly increase for wind speeds greater than 50 m s−1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3