Microphysics and Radiation Effect of Dust on Saharan Air Layer: An HS3 Case Study

Author:

Tao Zhining12,Braun Scott A.2,Shi Jainn J.23,Chin Mian2,Kim Dongchul12,Matsui Toshihisa24,Peters-Lidard Christa D.2

Affiliation:

1. Universities Space Research Association, Columbia, Maryland

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Morgan State University, Baltimore, Maryland

4. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

A Saharan air layer (SAL) event associated with a nondeveloping African easterly wave (AEW) over the main development region of the eastern Atlantic was sampled by the NASA Global Hawk aircraft on 24–25 August 2013 during the NASA Hurricane and Severe Storm Sentinel (HS3) campaign and was simulated with the NASA Unified Weather Research and Forecasting (NU-WRF) Model. Airborne, ground-based, and spaceborne measurements were used to evaluate the model performance. The microphysical and radiative effects of dust and other aerosols on the SAL structure and environment were investigated with the factor-separation method. The results indicate that relative to a simulation without dust–radiative and microphysical impacts, Saharan dust and other aerosols heated the SAL air mainly through shortwave heating by the direct aerosol–radiation (AR) effect, resulting in a warmer (up to 0.6 K) and drier (up to 5% RH reduction) SAL and maintaining the strong temperature inversion at the base of the SAL in the presence of predominant longwave cooling. Radiative heating of the dust accentuated a vertical circulation within the dust layer, in which air rose (sank) in the northern (southern) portions of the dust layer. Furthermore, above and to the south of the dust layer, both the microphysical and radiative impacts of dust tended to counter the vertical motions associated with the Hadley circulation, causing a small weakening and southward shift of convection in the intertropical convergence zone (ITCZ) and reduced anvil cloud to the north. Changes in moisture and cloud/precipitation hydrometeors were largely driven by the dust-induced changes in vertical motion. Dust strengthened the African easterly jet by up to ~1 m s−1 at the southern edge of the jet, primarily through the AR effect, and produced modest increases in vertical wind shear within and in the vicinity of the dust layer. These modulations of the SAL and AEW environment clearly contributed to the nondevelopment of this AEW.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3